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ABSTRACT
Passenger comfort is a major factor influencing a commuter’s deci-
sion to avail public transport. Existing studies suggest that factors
like overcrowding, jerkiness, traffic congestion etc. correlate well
to passenger’s (dis)comfort. An online survey conducted with more
than 300 participants from 12 different countries reveals that differ-
ent personalized and context dependent factors influence passenger
comfort during a travel by public transport. Leveraging on these
findings, we identify correlations between comfort level and these
dynamic parameters, and implement a smartphone based applica-
tion, ComfRide, which recommends the most comfortable route
based on user’s preference honoring her travel time constraint. We
use a ‘Dynamic Input/Output Automata’ based composition model
to capture both the wide varieties of comfort choices from the
commuters and the impact of environment on the comfort param-
eters. Evaluation of ComfRide, involving 50 participants over 28
routes in a state capital of India, reveals that recommended routes
have on average 30% better comfort level than Google map recom-
mended routes, when a commuter gives priority to specific comfort
parameters of her choice.
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1 INTRODUCTION
Existing studies have shown that multiple factors, such as the na-
ture of the road, bus condition, traffic congestion, driving pattern,
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overcrowding, waiting time at different bus stoppages etc. signifi-
cantly influence individual commuter’s preference while traveling
in a public city bus [14, 31]. Findings of a commuter pain survey
conducted by IBM (2011) show that deterioration of such factors
increases stress and anger among commuters [1]; in a separate
study on New Delhi, commuters desire that safety and individual
preferences be honored in public transport [21]. The poor condi-
tions get exacerbated in developing countries where in addition
to infrastructural limitations like poor road conditions, unplanned
creation of bus stoppages and absence of lanes, public buses daily
witness sights of overcrowding and chaotic behavior of the bus
drivers [7, 16, 20, 27, 35].

This backgroundmotivates us to explore the possibility of design-
ing a low-cost smartphone-based personalized route recommender
application, which takes into account individual commuter com-
fort while recommending. Majority of the existing mobile based
transit recommender systems, such as [2, 3, 11, 12, 18, 19] provide
recommendation based on the fare and the travel time optimiza-
tion; individual preferences which impact on-route comfort is still
a largely unexplored area. In this paper, we propose ComfRide – an
end-to-end smartphone based personalized bus route recommender
system, which recommends the most preferable bus route based on
commuters’ individual comfort preferences (§ 6.4). It captures di-
verse features through smartphones, which impact the commuter’s
comfort level while using public transport and develops a personal-
ized route recommender employing the fuzzy set theory along with
TOPSIS approach [28], which considers individual comfort level
based on spatio-temporal road and route characteristics. Besides
this diverse and wide suite of factors across various possible routes,
single or multiple breakpoints in the journey is also considered, if
that increases comfort.

In order to capture the spatio-temporal dynamics over a wide
choice of features, we design the route recommendation algorithm
using a specialized compositionalmodel, calledDynamic Input/Output
Automata (DIOA) [4]. The DIOA ensures that the system is not
overwhelmed with the huge amount of data to be processed thus re-
ducing the load on the system. Effectively, ComfRide utilizes DIOA
based compositional model to identify the most preferable route
efficiently based on the historical information and the context of
the query. Moreover, the DIOA also provides a mechanism to dy-
namically modify the model to suit the personalized preference
of a commuter on obtaining a feedback from her after a trip, thus
improving the quality of recommendation after every trip. An exten-
sive deployment of ComfRide involving 50 volunteers for a period
of two years (at weekday, weekend; at 3 different time periods)
over 28 routes in a state capital of India reveals that it can recom-
mend routes with on average 30% better comfort level than the
ones proposed by Google Maps as well as other baselines.
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2 RELATEDWORK
In this section, we present a brief survey of the existing literature,
broadly focusing on two aspects related to our work – (a) comfort
features and their measurements and (b) personalized transit route
recommender systems.

Comfort features and measurement of comfort: The rela-
tive importance of comfort features is a subjective issue as it de-
pends on personal, regional and socio-economic attributes. Several
works done to understand comfort features in public transport
suggest that the choice of a bus route is affected by comfort lev-
els [20, 24, 34, 35], and comfort further depends on roughly two
aspects, viz, vehicle performance related features, such as vibrations,
jerk etc. [9, 30], and bus-operating environment related features,
like over-crowding, travel-time and so on [20, 22, 32, 35]. In most of
the transport research literature, such as [13, 32, 34] and the refer-
ences therein, comfort is measured via personal interviews, which
is time-consuming and labor-intensive, hence lacks scalability and
timeliness. Recently, participatory sensing (crowdsensing) using
smartphone apps (like CMS [25], RESen [33], CommuniSense [29],
UrbanEye [38]) use a new sensing paradigm, called war-driving,
where volunteers contribute their phones’ sensor data that can be
used to analyze comfort levels.

Personalized transit recommendation: Several public bus
trip planner systems are available, like the Google Transit [17],
TRipGo [3], GOTransit [2] etc., which give information on alterna-
tive routes, fares, schedules, as well as map-based visualization of
the real time traffic information. Further, some of the personalized
bus route recommendation systems like MetroCognition [5], PA-
TRASH [26] etc. rely on specialized cards [18], war driving [38] or
explicit user feedback [5] for route database generation. The exist-
ing personalized route recommender systems and tour planners,
like PaRE [23], FAVOUR [8], Routeme [19], Feeder [40], Treads [15]
etc. are mostly developed for private cabs and taxis and do not
consider the wide sets of comfort parameters as experienced during
public bus travels in our daily life, along with the dynamics of the
environments as well as personalized choices of the commuters.

3 MOTIVATIONAL STUDY
In this section, we discuss the findings that motivate us to develop
ComfRide. Our findings are based on the analysis of Google Transit
data and a world-wide user survey conducted involving 300 public
transport commuters.

3.1 Google Transit Data Analysis
First, we explore the number of possible routes between a source-
destination pair and their features. For this purpose, we select all
the country capitals of the world, where Google Transit information
is available. We randomly select 50 locations in these cities and
find number of bus routes between all the possible pairs. We use
Google Directions API to get this information. Figure 1 shows the
distribution of the percentage of number of routes between a source-
destination pair. We observe that more than 60% of the pairs have
at least 4 bus routes between them and close to 25% have more than
8 bus routes. We also calculate the results separately for developed
and developing countries and it can be seen that the result is almost
similar in both cases.
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Figure 1: Cumulative Distribution of number of bus routes between
random (source, destination) pairs calculated for all the capital
cities of the world where Google Transit information is available.
Inset: Same result shown for developed and developing countries.
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Figure 2: a) Mean and standard deviation over distance calculated
over source, destination pairs having similar number of routes. (b)
Mean standard deviation of time duration calculated over all the
routes between a given source, destination pair for a given number
of routes.

Although an alternate route may be beneficial in terms of pa-
rameters like being less crowded, but it may not be feasible if the
travel time is too high compared to the shortest route. To explore
whether the alternate route choices are feasible, we randomly select
source-destination pairs having different number of routes between
them. For each of these pairs, we measure the difference in distance
traveled and travel time in Figure 2. Figure 2(a) shows that for every
type of route, there is a considerable variation in the trip distance.
It also demonstrates that the trend is similar for both long and
short trips. Selection of an alternate route is also driven by the fact
that it does not consume high travel time. For this purpose, we
find the standard deviation of travel time over all the routes for a
given source-destination pair. We group these by the number of
routes and calculate the mean as shown in Figure 2(b). We observe
that for none of the routes the mean value of standard deviation in
travel time exceeds 15 minutes, which we assume is acceptable by
a commuter based on the survey discussed as follows.

3.2 Commuter Survey
We have conducted a large scale online survey involving more than
300 participants across the globe, who mostly access the public
transport system. Responses were obtained from different devel-
oped and developing countries including Italy, UK, Netherlands,
Norway, Germany, France, USA, India, Nepal, Iran, Pakistan, Sri
Lanka and Vietnam. Around 25% participants are female and are
aged between 20 to 65 years. In our survey, we design the question-
naire to assess factors like total travel time, traffic congestion, sitting
probability, road condition, bus type (AC or non-AC buses), number
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Figure 3: Commuter Survey Results: (a) Delay due in reaching, (b)
Type of Bus, (c) Travel without seat, (d) Compromise Travel Time
to get a seat, (e) Travel on bad roads, (f) Compromise Travel Time
for better road, (g) Stuck in Traffic, (h) Compromise Travel Time for
less congested route (time units are in minutes)

of stops, break journey, which reflect factors regulating commuter
comfort and their interplay for a comfortable journey.

Table 1: Country-wise Responses to issues faced by commuters (All
values are in percentage; Re: Regularly, O: Occasionally, R: Rarely,
VB: Very Bad, B: Bad, M: Moderate, N: None)

CountriesDelay in Reaching No seat Bad Road Traffic Jam
Re O R Re O R VB B M N Re O R

India 40.7 43.5 15.8 47.8 37.2 15 24.9 42.3 30 2.8 67.6 26.5 5.9
Nepal 80 20 0 40 60 0 40 20 40 0 60 40 0
Iran 12.5 62.5 25 62.5 25 12.5 0 12.5 75 12.5 62.5 37.5 0

Sri Lanka 66.7 16.7 16.6 83.3 16.7 0 16.7 33.3 50 0 83.3 16.7 0
USA 0 42.9 57.1 14.2 42.9 42.9 14.3 42.9 28.6 14.3 28.6 14.3 57.1

France 0 25 75 75 25 0 0 75 25 0 25 25 50

In a nutshell, this survey reveals that there exist multiple param-
eters (Figure 3), viz., speed of the bus, congestion, probability of
getting a seat, etc, which impact commuters’ comfort during the
trip, and individuals differ widely in their perception of comfort
primarily depending on their age and gender. Moreover, the trend
is quite similar all over the world (Table 1).

3.3 Summary
We summarize the findings below from this study. (a) Among the
various routes available in between a source-destination pair, trav-
eling on an alternate route apart from the minimum distance often
provides benefit in terms of comfort choices, but finding the best
one manually may not be feasible. (b) There are different factors
influencing commuter comfort on a public bus, which are more
pronounced in developing countries. These findings call for de-
veloping a public transport recommender application which can
identify the most preferable route for a commuter based on her
preferences. Existing studies show that different sensors present in
a smartphone, like accelerometer, gyroscope, compass, GPS, sound
sensors etc., are sufficient enough to effectively determine various
road and route features and to correlate them with the commuter
comfort [5, 10, 33, 36, 39]. By utilizing such crowdsourced features
from a smartphone, we propose ComfRide to recommend the most
comfortable route based on the personalized preferences of a com-
muter.
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Figure 4: Impact of increase in the number of routes on the mem-
ory requirement and computation time of the two approaches (a)
Natural logarithm of the average state space varying with number
of routes for both the algorithms. (b) Variation of average computa-
tion time when each of the two algorithms are executed.

4 CHALLENGES INVOLVED
Development of a recommendation system considering various on-
road diversities and personalized choices of commuters has multiple
challenges, as discussed in this section.

4.1 Developing a Personalized System
Users may have personalized choices towards finding out the most
comfortable route. While one user may prefer a route with min-
imum travel time even if the bus is crowded; a second user may
prefer a route that is not crowded and thereforemaximizes the possi-
bility of getting a seat. The system should adopt to the personalized
choices of the users while making a recommendation.

4.2 Optimizing Memory & Computation Time
The general approach of addressing a route recommendation prob-
lem would be to convert it into a graph-based problem and run
queries on the graph. A graph-based approach for route recommen-
dation has following challenges.

4.2.1 Generation of Complete Network Graph. The direct
approach would be to store the complete route data as a graph, and
then any query is processed on this graph. FAVOUR [8] is a route
recommender system for private vehicles based on this approach.
Considering the factors like (a) possibility of multiple feasible routes
between a source-destination pair, (b) possibility of opting for one or
more breakpoints during the journey for improving comfort choice,
and (c) users’ personalized choices on route parameters (like travel
time, road condition, crowdedness), the state space of the graph
can increase exponentially. To observe this, we have executed the
FAVOUR algorithm [8] on the public bus transit routes obtained
throughGoogle Directions API. Considering the plot given in Figure
4(a), it is evident that an increase in the number of routes increases
the average state space exponentially. In addition to increasing the
memory requirement, this also increases the computation time as
seen in Figure 4(b). The average computation time increases to
more than a minute (over a system with Intel(R) Xeon(R) E5-2620
v3 @ 2.40GHz CPU, 32GB memory, Debian 9.3) when 6 routes are
possible, and becomes double when the number of possible routes is
14. A high response time is not suitable for a mobile based system.

4.2.2 Generating a Query-based Sub-graph. Another ap-
proach would be to not generate the complete graph at one go;
instead whenever a query comes, a graph is generated based on the
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query information. PaRE utilizes such approach for query execution
for route recommendation based on historical trajectory data [23].
Employing such an approach reduces the state space as shown in
Figure 4(a) (from similar experiments over the routes from Google
Directions API as mentioned earlier). However, the computation
time is not decreased considerably pertaining to the overhead of
generation of the query graph for each query. Here we observe that
the average computation time reaches close to 2 minutes for 14
possible routes.

5 COMFRIDE SYSTEM
Developing an end-to-end system requires tackling the previously
mentioned technical challenges efficiently. In this section we first
discuss how we plan to overcome the challenges and then give an
overview of the ComfRide system.

5.1 Mitigating the Challenges
Based on previous discussion, we need an approachwhich optimizes
both memory and graph generation time. A natural choice for this
is to remember the relevant information based on the context of a
query (like the time of the day when a query is fired) and prune the
nodes which are irrelevant to the context. For example, a route may
remain very crowded during the evening, and therefore, if a user
asks for a less crowded route with a budget on travel time during
the evening, the crowded routes may be pruned a priori based on
the memory and the context.

To utilize such historical patterns and the context of a query,
we use DIOA [4] as a specialized data structure. A DIOA is a state
machine where any transition is linked to some named actions or
signatures. The signatures are programs or algorithms that can
be executed dynamically on the fly to change the structure of the
automata. These signatures can be both to interact with the envi-
ronment (external entities like some other automata) for extracting
the historical patterns and the context information (called input or
output signatures), or to perform local tasks (internal signatures).
As an example, the input signature of an automata can provide
historical patterns (like the statistics of a route) and the context
(like time of the day), whereas the internal signatures can prune out
unnecessary nodes from the graph and find out the best possible
route according to commuter’s choice. As shown in Figure 5, the
input is received from the user as well as from the database that
contains historical information, and the system triggers various
internal signatures. These internal signatures apply filters based on
the context of the query as defined above. Routes passing all these
filters are only considered and hence the final graph generation is
fast. The dynamic nature ensures that the automata can be updated
anytime during the execution based on the signatures. Moreover,
this ensures that a copy of the automata can be generated in parallel,
when the automata is already being used by some other signature,
and a separate query can be run on this copy.

The dynamic nature of DIOA also helps in designing a personal-
ized system based on user feedback as an input signature, as shown
in Figure 5. Once a commuter experiences a travel based on the
recommendation of the system, she has the option to provide a
feedback to the system. This feedback can be processed by the

Figure 5: System Architecture

automata signatures for embedding the personalized choice of the
commuter inside the internal signatures.

5.2 System Overview
The overall system can be divided into two broad modules (Figure 5)
– (a) the client module (the smartphone app) which runs the client
automaton and (b) the server module (runs over a remote server)
that runs the server automaton with various filters as internal
signatures. Additionally, ComfRide uses a database to store the
historical information that are used by the server module to apply
various filters using the internal signatures.

5.3 Database Generation
The rich database is the core component of ComfRide. The data-
base contains various road and route related features that influence
the comfort level of a commuter. This database is stored at the
ComfRide server and queried during the route recommendation. In
ComfRide, a bus route is divided into multiple segments, and the
comfort features are computed for individual segments at different
times of the day to capture the spatio-temporal diversity of feature
values over the route. The data collection module of the ComfRide
app runs as a background process that collects various sensor data
periodically from the smartphone sensors, like accelerometer, gyro-
scope, compass, periodic GPS, sound sensors etc. leveraging on the
exiting crowdsensing techniques [5, 33, 37]. From these sensor data,
we extract various Point of Concerns (PoC) that can impact travel
choice, like sharp turn, speed breakers, bad road patches, congested
roads and crowded route segments. Existing methodologies from
the literature [29, 33, 36, 38] have been utilized for this purpose.
Based on the survey conducted on general commuters (§ 3), we
primarily focus on following features that can impact users’ choice
in selecting a bus route. These features are classified into two cate-
gories. (a) Segment specific features: Features like (i) average speed
of a bus from one stoppage to the next stoppage, (ii) crowding, (ii)
probability of skipping a bus stop, (iii) average stopping time at a bus
stop, (iv) jerkiness and (v) speed before a PoC would vary between
route segments; hence are calculated separately for every segment.
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These features also vary widely at different times of the day; so, we
capture temporal distribution of the feature values by dividing the
day into multiple time zones. (b) Route specific features: Features
like the distribution of PoCs over a bus route are evaluated over
the complete route.

The database of ComfRide, populating the aforementioned fea-
tures, consists of following twomajor tables, Route Table and Feature
Table. The Route Table, indexed by the bus route information (route
name & terminal stops), stores the route specific features. The Fea-
ture Table is indexed by the segment information (the delimiter
bus stops & corresponding route) and stores the respective segment
specific features. Notably, all the features are stored in the database
with the respective time zones.

6 ROUTE RECOMMENDATION USING DIOA
We construct the signatures of the DIOA forComfRide, that executes
a query based on the information available at the database, context
of the query and personalized choices of the user. During the query
execution, the user provides the source-destination pair and her
personalized choices on the query features through the ComfRide
app, which is executed at the server based on the DIOA signatures.

6.1 ComfRide DIOA
TheComfRideDIOA consists of two components - the client automa-
ton (runs at the Smartphone app) and the server automaton (runs
at the processing server), as shown in Figure 5. Figure 6 gives the
states, signatures and transition details for the client and the server
automata. The broad features of ComfRide DIOA are as follows. At
the beginning of a travel, the client sends a query to the server.
Based on the source (s)-destination (d) pair in the query, the server
extracts a set of candidate routes (R) based on the filters discussed
in the previous section. It then shortlists the predominant route
features (F) from the database for the given s-d pair and requests
the clients to provide a feature ordering and weights based on the
personalized choice. This is the first filter that removes unfeasible
routes based on the query context (like time of the day, spatial
characteristics of the route etc.). According to the feature ordering
F and the feature weightsW along with the context of the query
and historical statistics about the route, the server DIOA applies
several internal signatures to find out the most suitable route R for
recommendation. Finally, the commuter provides a feedback (F ) to
the client automaton at the end of the trip, which helps the DIOA
to integrate personalization within the feature weights. The details
of the client and the server automata are discussed next.
Client Automaton: The client has a four-state automaton, with
an initial idle state and three other states – (i) query for feature
selection (querying), (ii) waiting for the recommended route af-
ter a query (waiting) and (iii) when the commuter is en-route
(riding). The client automaton is initialized at the idle state, and
the initial input to the automaton is from the commuter with the
s-d pair (request(s,d)). On receiving the input, the query is for-
warded to the server, and the client state is changed to querying.
At this state, the client can receive an input signature from the
server for providing the personalized choice of feature ordering
(response(F)), and based on the user input for feature ordering
and weights, it generates an output signature ftr_order(F,W)

Figure 6: The complete state diagram of the DIOA based model in
ComfRide. Numbers below the transition arrow represent the exe-
cution steps in the working of ComfRide. "POST: <sig>" transitions
are the effect of the signature sig.

to response the same. Here,W are the feature weights calculated
from the feedback value F . It is to be noted that for the first trip,
the weights are non-personalized. These weights are updated after
each trip based on the feedback received from the user. At this
stage, the client moves to the waiting state. Finally, once the rec-
ommended route from the server is received as an input signature
inform(R), the client moves to the riding state. At the end of the
trip, the client automaton is reset to the idle state after providing
the feedback through the signature feedback(R,F ). Once here,
the client executes the internal signature correct(F ,W), to set
the personalized weights based on the user feedback.
Server Automaton: The server automaton has three states – (i)
feature selection (ftrsel), (ii) route selection (routesel) and (iii)
idle (idle). Moreover, ftrsel and routesel each have two inter-
mediate boolean state variables (fweight and rfind) indicating
the status of the information available from the clients. Initially the
server is in the idle state, while the intermediate state variables
are set to false. It receives inputs as the route query (query(s,d))
and feature order (ftr_order(F,W)) from the client automaton.
The outputs are the responses that it sends to the client corre-
sponding to selected predominant features for a given s-d pair
in the query (response(F)) and the final recommended route
(inform(R)). The server automaton has three internal signatures
to prune out irrelevant information (the filters) – (i) selecting pre-
dominant features based on the historical statistics and the query
context (select_ftrs(s,d)), (ii) assigning weights to the features
for user personalization (assign_wt(F, W)), and (iii) finding
the route for recommendation from the set of candidate routes
(findroute(R) where R is the set of candidate routes). We now
describe the methodology used by the internal signatures.

6.2 Feature Shortlisting (select_ftrs(s,d))
Among the set of available features, a subset of them becomes
predominant for a given route based on the context of the query.
For example, certain routes never remain congested at the night
time; so, it may not be a prominent feature for a query over that
route during night time. ComfRide aims to identify and flash only
the prominent features to the commuters. To find the predominant
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features F, the server automaton computes the occurrence density
(number of occurrences per km of the route) of all the features of
a route. select_ftrs(s,d) signature selects the features that are
having the top |F| highest occurrence density among all possible
routes between the given s-d pair.

6.3 Adjust Feature Weight (correct(F , W))
In the ComfRide app, a commuter gives a score on a 5-point scale
to each of the predominant features between the s-d pair of the
query. Consequently, the weights (ω) of the features are assigned
following the Likert Scale (1, 3, 5, 7 and 9 for five features) for the
first trip by a commuter. For every subsequent trips, the feedback
provided by the commuter during the previous trips is used to
tune the weights of the features. Assume that for a feature f1, the
commuter gives a feedback ϵ f1i ∈ F , and the previously assigned
weight was ωf1

i−1 after the (i − 1)th trip. Then, we assign the weight
for the ith trip as ωf1

i = ω
f1
i−1 + ω

f1
i−1 ∗ ϵ

f1
i . It is to be noted that the

relative weights of two features should follow their rankings based
on the Likert scale. So, if f1 and f2 are two features with Likert
scale valuesWLf1 andWLf2 (WLf1 ≤ WLf2 ), then ω

f1
i ≤ d × ω

f2
i ,

whered = WLf2
WLf1

. After every ith trip, if the commuter is dissatisfied

with respect to a feature fk by ϵ
fk
i , then after a fixed number of

trips, ϵ fki → 0. Eventually, the weight assigned to the feature fk
converges to the same as desired by the commuter. This is because
ϵ
fk
i is non-increasing as an increase in the weight for a feature
would give a better or same route. Hence, the new recommendation
wouldn’t dissatisfy the commuter more than the previous case.

6.4 Route Recommender
Based on the user provided feature ranking and personalized feature
weight adjustment by the server automaton, the internal signature
findroute(R) extracts the recommended route from the set of
candidate routes R. The set of candidate routes includes all the
feasible routes between the given s-d pair in the query, which con-
form to the user’s travel time budget. The allowable deviation in
travel time is taken as an input during the ftr_order(F,W) sig-
nature execution. We consider the routes between the given s-d
pair, where the median travel time as obtained from the historical
data is not more than the historical median travel time for the least
cost route (the route with minimum travel time) for the s-d pair
plus the allowed deviation specified by the commuter. In ComfRide
we employ the fuzzy set theory based recommendation technique
along with TOPSIS to develop our recommender [6, 28]. TOPSIS
constructs a feature matrix for various available alternatives and
ranks the alternatives based on the distance similarity with the
worst alternative in comparison to the best alternative. The major
challenges here are (a) to obtain the feature set and a matrix of
possible alternatives and (b) to optimize this matrix over differ-
ent factors to get the best route based on a ranking strategy. The
data collection application and database generation take care of
identifying and defining the feature set. The pruning techniques
employed using the DIOA further simplify the resulting matrix of
feature sets for various alternate routes. Consequently, the scor-
ing as discussed in [28] gives the value of the metric called Route

Figure 7: Considering breakpoints during a travel

Comfort Index (χ ), defined as follows. Let ρ be the feature value as
computed for a route, andω is the feature weight obtained from the
internal signature assign_wt(F,W). The feature values are cal-
culated from the crowdsourced data collected from the commuters
using the techniques discussed in [36], and are normalized over
different routes based on TOPSIS feature normalization [6]. Then,
χ =

∑
n∈F ρn ∗ ωn . Now, for every route in R, χ is calculated from

the feature matrix, and the route having the highest rank based on
TOPSIS distance similarity over χ is recommended.
Opting for a break journey: Based on the commuter’s choice of
comfort parameters, there may be instances when taking a break-
point during the journey and availing a different bus from the
breakpoint to the destination are more fruitful than taking a direct
route. If the commuter opts for a break journey, then we have to
consider both break and non-break scenarios.

We solve this problem through a dynamic programming ap-
proach. The basic intuition is as follows. A breakpoint can be taken
at a stoppage where two different bus routes intersect. From the
set of candidate routes R between the given s-d pair, we first find
out such intersecting stoppages. Let C be the set of such intersect-
ing stoppages. Then we construct a weighted direct acyclic graph
(DAG) G(V,E) as follows. The vertex set V contains the elements
C ∪ {s,d}. We construct an edge e(v1 ∈ V,v2 ∈ V) ∈ E if there is
at-least one direct bus route fromv1 tov2 without having any other
intersecting stoppages in between. Note that there can be more
than one bus routes fromv1 tov2. The edge weight for e(v1,v2) ∈ E
is the χ value for the best bus route between the two intersecting
stoppages v1 and v2, calculated using TOPSIS as discussed earlier.
Figure 7 shows an example with 4 different routes between the s-d
pair and the corresponding DAG structure. We apply the dynamic
programming over this DAG structure. Consider the route from s to
d via C1 and C3, as shown in Figure 7. There are two substructures
if the commuter wants to take a single break – either break at C1
or take a break atC3, and choose a different bus route. We consider
that χ of an end-to-end travel is the average of all the χ values of
the route segments that the commuter follows. Let χns,d denote the
RCI between s and d with n number of breaks. Then the optimal
substructure of this problem is represented as follows.

χns,d = max
c ∈C,1≤m≤n

1
n

(
(n −m) × χn−ms,c +m × χmc,d

)
(1)

Let a commuter prefers at most β number of breaks. Then based
on the dynamic programming approach, we compute the recom-
mended travel as the sequence of bus routes with zero or more
breakpoints, which provide the maximum RCI as follows.

χmax
s,d = max

0≤n≤β
χns,d (2)



ComfRide... RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

Table 2: Source-destination (S-D) Pair Details; Distance and travel
time are given for all possible routes between the S-D pairs

(S, D) Pair Source Destination
Distance
(km)

Avg. Travel
Time (min)

1 2 3 4 5 1 2 3 4 5
P1 KM RH 10 10 15 15 9 55 55 65 65 50
P2 SC RH 6 6 6 6 - 30 30 30 30 -
P3 SC GH 8 8 8 8 - 45 45 50 50 -
P4 KM JP 15 15 20 20 14 70 65 95 90 65
P5 TG CC 4 4 5 6 - 25 27 35 40 -
P6 NT MS 14 13 - - - 55 50 - - -
P7 SS RG 14 14 15 15 - 42 58 46 46 -

7 IMPLEMENTATION AND RESULTS
We have developed ComfRide as an Android app. The deployment
and testing of the system spanned for around two years – from
March 2016 to April 2018, when we conducted rigorous data col-
lection and analysis in a state capital city (area 1887 sq.km) in
India. The experiment has been conducted on 7 source-destination
pairs, with 28 different bus routes. The details of the routes for
these 7 source-destination pairs are given in Table 2. The Com-
fRide server is implemented on Debian 9.3 server, with a Intel(R)
Xeon(R) E5-2620 v3 @ 2.40GHz CPU and 32GB memory. Diverse
set of smartphones have been used during experiments with cost
ranging from 90US$ to 300US$ and the Android version 4.4 to 6.0.

7.1 Experiment Planning and Setups
For data collection through controlled crowdsourcing, we recruited
50 volunteers, who were primarily undergraduate college students.
These students were provided with suitable incentives (approx.
$50 as honorarium and a volunteer certificate). 20 volunteers were
given specific travel routes (source, destination and the road to be
followed) where they traveled in their leisure time (semi-controlled
experiments), while the remaining volunteers collected data dur-
ing their regular travels from home to college and back (general
deployments). Volunteers were asked to perform experiments for
two sets of routes – with and without a break journey, based on
ComfRide recommendation. Every trip was taken by a group of
volunteers on different days at various times of the day. During
the semi-controlled experiments, a group of volunteers traveled
through the ComfRide recommended route based on their choice
of comfort, whereas another group of volunteers traveled using
Google Maps (G-Maps) recommended route (the baseline mecha-
nism) on the same day during the same time. It can be noted that the
G-Maps navigation system recommends a series of routes, which
are ordered according to the total expected travel time. For baseline
comparison, the volunteers have taken the route with the least
expected travel time as recommended by the Google navigation.

7.2 ComfRide vs. Google Navigation
First, we compare the performance between ComfRide recommen-
dation and G-Maps recommendation in terms of various comfort
features. However, due to space constraints, here we discuss and
compare the performance in terms of crowding of a bus, which
is measured in terms of the possibility of getting a seat after a
commuter boards a bus. In this case, the commuters give highest
preference to the less crowded bus routes followed by less travel
time, jerkiness and congestion. Figure 8(a) compares recommended
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Figure 8: Comparison of ComfRide recommended and G-Maps rec-
ommended routes with respect to probability of sitting
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Figure 9: (a) Trade-off w.r.t. congestion when giving preference to
probability of sitting, (b) Variation of RCI for different S-D pairs

and non-recommended routes w.r.t. average time after which the
commuter secures a seat. We normalize this time by the total travel
time. We observe that for all the trips, this time is very low for
the recommended route, except for P6 where there are only two
possible routes and hence less possible variations. We see zero value
for P1 and P4; this is mainly because of the fact that the source is
a terminal bus stop for the ComfRide recommended route. Figure
8(b) shows the fraction of trips when the commuter was able to get
a seat. The commuter gets a seat for all the trips except in case of
one trip for P3 and P5, when the recommended route is preferred.
However, giving a higher preference to the sitting probability can
result in a trade-off w.r.t. other parameters. We show this trade-off
for congestion in Figure 9(a). In most of the cases, time in conges-
tion is higher when on a ComfRide recommended route based on
sitting probability. However, this is not always true as for P2 and
P6.

We check the average RCI for the ComfRide recommended routes
and G-Maps recommended routes, as shown in Figure 9(b). Our
experiments show that the route recommended by ComfRide has a
better average RCI than the other routes in between the same source-
destination pair. We observe that on an average, the recommended
routes have a 30% better comfort level. It can be noted that the
recommendation is based on the commuter’s choice and priority
assigned for different features during the trip.

7.3 Impact of Personalization
Next, we analyze how different features impact route recommen-
dation over different bus routes. There are certain cases when the
route recommended by ComfRide and G-Maps are similar, primarily
for the cases where there are less alternate routes, or the commuter
gives priority to the travel time. During the semi-controlled ex-
periments, we have considered multiple orderings of features at
different times of the day, and checked for how many instances, the
ComfRide recommended route and G-Maps recommended routes
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Table 3: State space comparison for Graph & DIOA based approach

(S,D) Pair Stops Available Routes Graph DIOA

P1 85 5 599760 425
P2 24 4 46368 120
P3 60 4 297360 300
P4 150 5 1877400 750
P5 57 4 268128 285
P6 64 2 338688 320
P7 95 4 750120 475

are same. In Figure 10(a) we show the percentage of trips when
both the systems have recommended the same route. P6 has higher
percentage because it has only two different bus routes. Interest-
ingly, we observe that the ComfRide recommended routes differ
from G-Maps recommended routes for many instances, which is as
high as 70% for P2 and P3, indicating that a route recommendation
based on commuters’ choice of comfort features is important and
not a trivial extension of G-Maps based navigation system.

7.4 ComfRide vs Competing Systems
We compare ComfRide with two personalized route recommender
systems proposed recently – PaRE [23] and FAVOUR [8]. PaRE relies
on historical data collected from previous trips of the commuter to
identify important landmarks and frequently used routes. It then
recommends the route to maximize the familiarity while minimiz-
ing number of segments. FAVOUR asks a set of questions to the
commuter, and then uses mass preference prior to predict best route
for her. This prediction is improved using Bayesian learning tech-
niques. We execute PaRE and FAVOUR over the collected dataset
and compare the recommendation performance with ComfRide.

7.4.1 Performance in terms of RCI. None of these two per-
sonalized route recommender consider the features used in Com-
fRide, and several scenarios are seen when the competing systems
perform poorly. The average RCI for different source-destination
pairs is higher for ComfRide as compared to the other two, as seen
in Fig 10(b). FAVOUR gives priority to the general choices of the
commuters over a route, and so, fails to capture the personal choices
of a commuter. On the other hand, PaRE gives priority to the per-
sonal choices, and thus ignores environmental impacts. ComfRide
balances both the personal choice and the environmental impact,
and therefore improves the RCI compared to others.

7.4.2 Advantage of DIOA in ComfRide. We also compare
the advantage of using DIOA over graph-based approaches, as
utilized in several route recommender such as [5, 23]. It is evident
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ber of routes from Google Direction API

from Table 3, that the state space is significantly reduced when
using DIOA compared to the graph-based approach. This provides
fast recommendation with reduced computation complexity.

We have also compared various system parameters, viz. memory
requirement, computation time and query response time, when the
same recommendation is done by PaRE and FAVOUR. The plots
in Figure 11(a) shows the ratio of the improvement in memory
requirement and computation time of ComfRide with respect to
the competing systems. As we observe from the plot, ComfRide
optimizes these parameters compared to the baselines in all the
four scenarios. Figure 11(b) shows the improvement ratio of query
response time in ComfRide when parallel queries are fired to the
system. A similar result is shown in Figure 12 for all the routes we
generated through the Google Direction API (details in §3). As is
evident, the pruning of the graph has helped to reduce the memory
requirement and the computation time by a huge margin in all the
scenarios. It is to be noted that in the competing systems, a separate
query processing graph is generated for each query. Therefore, there
is a significant impact on the query response time for large number
of parallel queries. Nevertheless, the DIOA helps in reducing this
load by pruning the graph based on contextual information.

8 CONCLUSION
Commuter comfort is a challenging problem for public transporta-
tion systems, as it is person specific and varies widely based on
the environment and multiple other socio-economic factors. In
this paper, we proposed ComfRide, a smartphone based system to
recommend the most comfortable route according to commuter’s
preferences over various environmental and personal choices. The
key concept behind ComfRide is to embed the general awareness
and intelligence used by a regular commuter to choose the best
(comfortable) bus route to reach her desired destination. ComfRide
relies on the crowdsourced GPS and inertial sensor data, collected
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through a mobile app, from the city commuters. Given a source-
destination pair, ComfRide recommends most comfortable route
based on commuter’s preference even by considering single or
multiple breakpoints during the journey. The novelty of the sys-
tem comes from utilizing a DIOA based composition model for
effectively processing the queries based on historical as well as con-
textual information. From a field trial for 2 years over 28 different
bus routes in a state capital of India, we observed that ComfRide
recommended routes have on average 30% better comfort level than
Google navigation based recommended routes, for various combi-
nations of commuters’ priorities to the comfort features. We believe
that ComfRide can take us one step ahead attracting commuters
more towards public transport, without waiting for the implemen-
tation of long term policies, especially in developing regions.

REFERENCES
[1] 2011. IBM Global Commuter Pain Survey: Traffic Congestion Down, Pain Way

Up (available online, last accessed: February, 2017). (2011). http://www-03.ibm.
com/press/us/en/pressrelease/35359.wss.

[2] 2017. GOTransit, (available online, last accessed: May, 2017). (2017). https:
//gotransitnc.org.

[3] 2017. TRipGo, (available online, last accessed: May, 2017). (2017). https://tripgo.
skedgo.com.

[4] Paul C Attie and Nancy A Lynch. 2016. Dynamic input/output automata: a formal
and compositional model for dynamic systems. Information and Computation
249 (2016), 28–75.

[5] Garvita Bajaj, Georgios Bouloukakis, Animesh Pathak, Pushpendra Singh, Niko-
laos Georgantas, and Valérie Issarny. 2015. Toward enabling convenient urban
transit through mobile crowdsensing. In Intelligent Transportation Systems (ITSC),
2015 IEEE 18th International Conference on. IEEE, 290–295.

[6] Majid Behzadian, S Khanmohammadi Otaghsara, Morteza Yazdani, and Joshua
Ignatius. 2012. A state-of the-art survey of TOPSIS applications. Expert Systems
with Applications 39, 17 (2012), 13051–13069.

[7] Maria Bordagaray, Luigi dell’Olio, Angel Ibeas, and Patricia Cecín. 2014. Mod-
elling user perception of bus transit quality considering user and service hetero-
geneity. Transportmetrica A: Transport Science 10, 8 (2014), 705–721.

[8] Paolo Campigotto, Christian Rudloff, Maximilian Leodolter, and Dietmar Bauer.
2017. Personalized and situation-aware multimodal route recommendations: the
FAVOUR algorithm. IEEE Transactions on Intelligent Transportation Systems 18, 1
(2017), 92–102.

[9] Juan C Castellanos and Fabiano Fruett. 2014. Embedded system to evaluate the
passenger comfort in public transportation based on dynamical vehicle behavior
with user’s feedback. Measurement 47 (2014), 442–451.

[10] Megha Chaudhary, Aneesh Bansal, Divya Bansal, Bhaskaran Raman, KK Ra-
makrishnan, and Naveen Aggarwal. 2016. Finding occupancy in buses using
crowdsourced data from smartphones. In Proceedings of the 17th International
Conference on Distributed Computing and Networking. ACM, 35.

[11] Giusy Di Lorenzo, Marco Sbodio, Francesco Calabrese, Michele Berlingerio, Fabio
Pinelli, and Rahul Nair. 2016. Allaboard: visual exploration of cellphone mobility
data to optimise public transport. IEEE transactions on visualization and computer
graphics 22, 2 (2016), 1036–1050.

[12] Karoly Farkas, Gabor Feher, Andras Benczur, and Csaba Sidlo. 2015. Crowdsend-
ing based public transport information service in smart cities. IEEE Communica-
tions Magazine 53, 8 (2015), 158–165.

[13] Massimo Florio. 2013. Network industries and social welfare: The experiment that
reshuffled European utilities. OUP Oxford.

[14] André Luís Policani Freitas. 2013. Assessing the quality of intercity road trans-
portation of passengers: An exploratory study in Brazil. Transportation Research
Part A: Policy and Practice 49 (2013), 379–392.

[15] Kaiqun Fu, Yen-Cheng Lu, and Chang-Tien Lu. 2014. Treads: A safe route rec-
ommender using social media mining and text summarization. In Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM, 557–560.

[16] Edward Glaeser and J Vernon Henderson. 2017. Urban Economics for the Devel-
oping World: An Introduction. Journal of Urban Economics (2017).

[17] Google. 2017. Google Transit, (available online, last accessed: May, 2017). (2017).
https://www.google.com/transit.

[18] Danhuai Guo, Ziqi Zhao, Wei Xu, Jinsong Lan, Tao Zhang, Shuguang Liu, Jianhui
Li, and Yuanchun Zhou. 2015. How to find a comfortable bus route – towards
personalized information recommendation services. Data Science Journal 14
(2015).

[19] Daniel Herzog, Hesham Massoud, and Wolfgang Wörndl. 2017. Routeme: A
mobile recommender system for personalized, multi-modal route planning. In
Proceedings of the 25th Conference on User Modeling, Adaptation and Personaliza-
tion. ACM, 67–75.

[20] Şükrü İmre and Dilay Çelebi. 2017. Measuring Comfort in Public Transport: A
case study for Istanbul. Transportation Research Procedia 25 (2017), 2441–2449.

[21] Suresh Jain, Preeti Aggarwal, Prashant Kumar, Shaleen Singhal, and Prateek
Sharma. 2014. Identifying public preferences using multi-criteria decision making
for assessing the shift of urban commuters from private to public transport: A case
study of Delhi. Transportation Research Part F: Traffic Psychology and Behaviour
24 (2014), 60 – 70.

[22] Jue Ji and Xiaolu Gao. 2010. Analysis of people’s satisfaction with public trans-
portation in Beijing. Habitat International 34 (2010), 464–470.

[23] Yaguang Li, Han Su, Ugur Demiryurek, Bolong Zheng, Tieke He, and Cyrus
Shahabi. 2017. PaRE: A System for Personalized Route Guidance. In Proceedings
of the 26th International Conference on World Wide Web. 637–646.

[24] Zheng Li and David A Hensher. 2011. Crowding and public transport: a review
of willingness to pay evidence and its relevance in project appraisal. Transport
Policy 18, 6 (2011), 880–887.

[25] Zheng Li and David A Hensher. 2013. Crowding in public transport: a review of
objective and subjective measures. Journal of Public Transportation 16, 2 (2013),
6.

[26] Hiroyuki Nakamura, Yuan Gao, He Gao, Hongliang Zhang, Akifumi Kiyohiro,
and Tsunenori Mine. 2014. Adaptive user interface agent for personalized public
transportation recommendation system: PATRASH. In International Conference
on Principles and Practice of Multi-Agent Systems. Springer, 238–245.

[27] Dorina Pojani and Dominic Stead. 2017. The urban transport crisis in emerging
economies: An introduction. In The Urban Transport Crisis in Emerging Economies.
Springer, 1–10.

[28] Faisal Rehman, Osman Khalid, and Sajjad Ahmad Madani. 2017. A comparative
study of location-based recommendation systems. The Knowledge Engineering
Review 32 (2017).

[29] Darshan Santani, Jidraph Njuguna, Tierra Bills, AishaW Bryant, Reginald Bryant,
Jonathan Ledgard, and Daniel Gatica-Perez. 2015. Communisense: Crowdsourc-
ing road hazards in nairobi. In Proceedings of the 17th International Conference on
Human-Computer Interaction with Mobile Devices and Services. ACM, 445–456.

[30] Dragan Sekulić, Vlastimir Dedović, Srdjan Rusov, Slaviša Šalinić, and Aleksandar
Obradović. 2013. Analysis of vibration effects on the comfort of intercity bus
users by oscillatory model with ten degrees of freedom. Applied Mathematical
Modelling 37, 18 (2013), 8629–8644.

[31] Khaled Shaaban and Rania F Khalil. 2013. Investigating the customer satisfaction
of the bus service in Qatar. Procedia-Social and Behavioral Sciences 104 (2013),
865–874.

[32] Xianghao Shen, Shumin Feng, Zhenning Li, and Baoyu Hu. 2016. Analysis of
bus passenger comfort perception based on passenger load factor and in-vehicle
time. SpringerPlus 5, 1 (2016), 1–10.

[33] Chao Song, Jie Wu, Ming Liu, Haigang Gong, and Bojun Gou. 2012. Resen:
Sensing and evaluating the riding experience based on crowdsourcing by smart
phones. In Mobile Ad-hoc and Sensor Networks (MSN), 2012 Eighth International
Conference on. IEEE, 147–152.

[34] Alejandro Tirachini, David A Hensher, and John M Rose. 2013. Crowding in
public transport systems: Effects on users, operation and implications for the
estimation of demand. Transportation research part A: policy and practice 53
(2013), 36–52.

[35] Dea van Lierop and Ahmed El-Geneidy. 2018. Is having a positive image of
public transit associated with travel satisfaction and continued transit usage? An
exploratory study of bus transit. Public Transport (2018), 1–16.

[36] Rohit Verma, Surjya Ghosh, Niloy Ganguly, Bivas Mitra, and Sandip Chakraborty.
2017. Smart-phone based Spatio-temporal Sensing for Annotated Transit Map
Generation. In Proceedings of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 16.

[37] Rohit Verma, Surjya Ghosh, Aviral Shrivastava, Niloy Ganguly, Bivas Mitra, and
Sandip Chakraborty. 2016. Unsupervised annotated city traffic map generation.
In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM, 59.

[38] Rohit Verma, Aviral Shrivastava, Bivas Mitra, Sujoy Saha, Niloy Ganguly, Subrata
Nandi, and Sandip Chakraborty. 2016. UrbanEye: An outdoor localization sys-
tem for public transport. In INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, IEEE. IEEE, 1–9.

[39] Xiao Wang, Xinhu Zheng, Qingpeng Zhang, Tao Wang, and Dayong Shen. 2016.
Crowdsourcing in ITS: The state of the work and the networking. IEEE Transac-
tions on Intelligent Transportation Systems 17, 6 (2016), 1596–1605.

[40] Desheng Zhang, Juanjuan Zhao, Fan Zhang, Ruobing Jiang, Tian He, and Nikos
Papanikolopoulos. 2017. Last-mile transit service with urban infrastructure data.
ACM Transactions on Cyber-Physical Systems 1, 2 (2017), 6.

http://www-03.ibm.com/press/us/en/pressrelease/35359.wss
http://www-03.ibm.com/press/us/en/pressrelease/35359.wss
https://gotransitnc.org
https://gotransitnc.org
https://tripgo.skedgo.com
https://tripgo.skedgo.com
https://www.google.com/transit

	Abstract
	1 Introduction
	2 Related Work
	3 Motivational Study
	3.1 Google Transit Data Analysis
	3.2 Commuter Survey
	3.3 Summary

	4 Challenges Involved
	4.1 Developing a Personalized System
	4.2 Optimizing Memory & Computation Time

	5 Comfride System
	5.1 Mitigating the Challenges
	5.2 System Overview
	5.3 Database Generation

	6 Route Recommendation using DIOA
	6.1 ComfRide DIOA
	6.2 Feature Shortlisting (select_ftrs(s,d))
	6.3 Adjust Feature Weight (correct(F, W))
	6.4 Route Recommender

	7 Implementation and Results
	7.1 Experiment Planning and Setups
	7.2 ComfRide vs. Google Navigation
	7.3 Impact of Personalization
	7.4 ComfRide vs Competing Systems

	8 Conclusion
	References

