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ABSTRACT
Keyboard interaction patterns on a smartphone is the input for
many intelligent emotion-aware applications, such as adaptive inter-
face, optimized keyboard layout, automatic emoji recommendation
in IM applications. The simplest approach, called the Experience
Sampling Method (ESM), is to systematically gather self-reported
emotion labels from users, which act as the ground truth labels, and
build a supervised prediction model for emotion inference. How-
ever, as manual self-reporting is fatigue-inducing and attention-
demanding, the self-report requests are to be scheduled at favorable
moments to ensure high fidelity response. We, in this paper, per-
form fine-grain keyboard interaction analysis to determine suitable
probing moments. Keyboard interaction patterns, both cadence,
and latency between strokes, nicely translate to frequency and time
domain analysis of the patterns. In this paper, we perform a 3-week
in-the-wild study (N = 22) to log keyboard interaction patterns and
self-report details indicating (in)opportune probing moments. Anal-
ysis of the dataset reveals that time-domain features (e.g., session
length, session duration) and frequency-domain features (e.g., num-
ber of peak amplitudes, value of peak amplitude) vary significantly
between opportune and inopportune probing moments. Driven by
these analyses, we develop a generalized (all-user) Random Forest
based model, which can identify the opportune probing moments
with an average F-score of 93%. We also carry out the explainability
analysis of the model using SHAP (SHapley Additive exPlanations),
which reveals that the session length and peak amplitude have
strongest influence to determine the probing moments.

CCS CONCEPTS
• Human-centered computing → Keyboards; Smartphones;
Human computer interaction (HCI); User interface design.
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1 INTRODUCTION
Keyboard interaction on smartphone, one of the widely used input
modalities, has been leveraged to develop many emotion-aware
services such as adaptive interface design [2, 22], optimized auto-
suggestion usage [12], guided response generation [15], mental
state tracking [3, 9, 13, 29, 32]. The backbone of such applications
is a supervised machine learning model, which correlates typing
characteristics with self-reported emotion labels to infer emotion [3,
10, 27, 32]. Often, the emotion self-reports are collected from a long-
term Experience Sampling Method (ESM) study, which requires
users to repetitively respond to survey probes; thus demands user
attention and often results into survey fatigue, participation burden
[1, 21, 23]. Hence, suitable self-report probing strategies based on
user attention are essential.

In the existing literature, several approaches exist to deliver
smartphone notifications at opportune moments [19, 20, 24, 31].
For example, Ghosh et al. developed a 2-phase model driven ESM
schedule to optimize the probing rate and self-report timeliness [11].
Fischer et al. showed that participants react faster to probes when
they are delivered immediately after completing a task on mo-
bile (e.g., reading a text message) [7]. Ho et al. demonstrated that
placing the probe between two physical activities (like sitting and
walking) may attract user attention quickly [14]. In [25], authors
demonstrated that last survey response, phone’s ringer mode can
be leveraged to identify suitable probing moments. However, to
the best of our knowledge, most of the prior work overlooked the
signatures exist in the smartphone typing activities to identify the
opportune probing moments.

We, in this paper, investigate the role of the smartphone key-
board interactions to identify the opportune probing moments for
emotion self-report collection. The smartphone typing depict two
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key facets - timing and rhythm, based on a person’s typing pattern
[5, 16]; hence we perform both time-domain and frequency-domain
analysis respectively on the keyboard interaction data (Section 3).
Precisely, (a) we analyze the time-domain characteristics such as
typing speed, error rate, session length, session duration of typing
instances to discriminate between inopportune and opportune prob-
ing moments (Section 3.1). Side by side, (b) we transform the typing
intervals to frequency-domain using Discrete Fourier Transform
(DFT) [33, 34]. We detect peaks [6] from the real coefficients of
the frequency-domain representation, and analyze the number &
value of peak amplitudes to discriminate between inopportune and
opportune moments (Section 3.2). Drawing on these, we develop
an aggregate (all-user) machine learning model, leveraging on both
time & frequency domain features, to predict the opportune probing
moments for emotion self-report collection (Section 4).

For experimental evaluation of the proposed model, we conduct
a 3-week in-the-wild study involving 22 participants. We develop
& distribute an Android smartphone keyboard, which traces user’s
typing interactions (not the text content) and collects the emotion
self-reports (happy, sad, stressed, relaxed), once the user completes
typing in an application. Additionally, the self-report survey pop-
up allows the user to indicate (via No Response label) whether the
current probing moment is (in)opportune (Section 2). The analysis
of the collected ≈3500 sessions reveals that time-domain features
(session length, session duration) and frequency-domain features
(number and value of peak amplitudes) exhibit the capacity to
mark the probing moment as inopportune. Finally, the proposed
model achieves an average F-score of 93% to correctly predict the
opportune probing moments, while explainability analysis of the
model reveals that session length and peak amplitude to have the
strongest influence on the model accuracy (Section 4.2).

2 FIELD STUDY AND DATASET
2.1 Experiment Apparatus
We have designed the keyboard app (Fig. 1) based on Android Input
Method Editor (IME) facility. It is same as QWERTY keyboard with
additional capability of tracing user’s typing interactions. We do
not store any alphanumeric character because of privacy reason.

Tracing Keyboard Interactions:We define session as the time
period spent by the user at-a-stretch on a single application. We
record the timestamp of every touch event within a session and
compute the interval between two consecutive touch events as Inter-
tap duration (ITD). For instance, we represent a session S of length
Sl (= n) as a sequence of timestamps [t1, t2, t3, ...tn ], depicting the
respective touch events, with session duration Sd = tn − t1. We
measure ITD as vi = ti+1 − ti , which reflects the typing speed of
the user; higher value of ITD indicates lower typing speed. Hence,
a session S may be further expressed as a sequence of ITDs, S =
[v1,v2,v3, ...,vn ], where vi indicates the ith ITD. Additionally, we
record the usage of the backspace or delete keys pressed in a session,
which helps to identify the amount of typing mistakes made in a
session.

Collecting Emotion Self-reports & Labelling Probing Mo-
ments: We also collect self-reported emotions from users. Once
user completes typing in an application and switches from the cur-
rent application, we probe her for the emotion self-report (happy,

Figure 1: App keyboard
Figure 2: Self-reporting
UI

Figure 3: Circumplex
model [26]

sad, stressed, relaxed) as shown in Fig. 2. We select these emotions
based on the Circumplex model (Fig. 3) of emotion [26], as they
represent largely represented emotion from separate quadrants,
which makes self-reporting easier for the user. We keep the inter-
face simple by explicitly recording emotion and do not consider
the intensity of perceived emotion, which can make self-reporting
difficult. We also keep the provision of No Response, so that user
can skip self-reporting by selecting this option. Whenever the user
reports No Response, the probing moment is considered inoppor-
tune, while any emotion (happy, sad, stressed, relaxed) response is
considered opportune.

2.2 Study Procedure & Dataset
We recruited 22 university students (18 M, 4 F) aged between 20
to 35 years. We installed the application on their smartphones and
asked them to use it for 3 weeks for regular typing activities and
emotion self-reporting. We also informed that once they complete
typing in an application and change it, theymay receive a self-report
pop-up, where they have to record their perceived emotion. They
were further instructed that if the probe appears at an inopportune
moment and they want to skip responding, they should select the
No Response button instead of dismissing the pop-up.

We have collected a total of 3463 sessions, out of which 2883 (83.3%)
sessions are opportune and 580 (16.7%) sessions are inopportune.
The average number of sessions per user is 157.4 (std. dev 93.8).
We observe that for 6 users (3, 9, 16, 17, 20, 21), all the sessions are
opportune; for 16 out of 22 participants at least 95% sessions are
opportune.

3 DATA ANALYSIS
In this section, we analyze the smartphone typing behavior and
demonstrate the role of time-domain and frequency-domain fea-
tures to discriminate the opportune and inopportune probing mo-
ments.
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Figure 4: Comparison of different time-domain characteristics between inopportune and opportune probing moments - (a)
session length (b) session duration (c) session speed and (d) error rate. This comparison reveals all these parameters vary
significantly (for session speed, p < 0.05; for others, p < 0.001) between these two probing moments.

Figure 5: Schematic diagram of transforming set of ITD(s)
to frequency domain. The set of ITD(s) obtained from differ-
ent sessions (e.g. S1, S2, S3) are transformed using Discrete
Fourier Transform (DFT) to obtain the frequency domain
representation. From this set of coefficient-pairs, we filter
out the imaginary ones and consider only the real ones for
future processing.

3.1 Time-domain Typing Features
We propose the time domain features of a session S as (a) typing
speed (SMSI ), (b) error rate (SEr ), (c) session length (Sl ), (d) session
duration (Sd ) to characterize the inopportune moments. We rep-
resent the typing speed in a session S as Mean Session ITD (MSI),
where we compute the mean of all ITDs present in session S as

SMSI =
∑n−1
i=1 vi
n−1 . We also compute the typing mistakes performed

in a session by counting the total number of backspace (or delete)
key pressed in a session (say, c), and compute as SEr = c

n . To handle
the inter-subject variability [4, 30], we normalize each time-domain
feature as x ′ = x−min(X )

max (X )−min(X )
, where X ∈ {SMSI , SEr , Sl , Sd } is

the set of values recorded for a feature across all individuals, x is
one instance of the set X ,min(X ),max(X ) indicate minimum and
maximum of the set X .

Role of features at inopportune moments: In Fig. 4a, we
observe that the session length (Sl ) of the sessions labelled as in-
opportune moments are comparatively high. Precisely, the median
session length (normalized) for inopportune and opportunemoment
sessions are 0.250 and 0.090, respectively. Since session lengths are

not normally distributed (p < 0.05 with Shapiro-Wilk test)1, we
perform the unpaired Mann-Whitney U test and observe a signifi-
cant effect of probing moment on the session length (U = 1467164,
Z = 28.727, p < 0.001, r = 0.488). Similarly, in Fig. 4b, we report the
significant effect of probing moment on session duration (Sd ) (U
= 1404436, Z = 25.870, p < 0.001, r = 0.439). This points to the fact
that users prefer to skip ESM probes while engaged in lengthy and
longer typing sessions. In Fig. 4c, 4d, we observe that typing speed
(SMSI ) and typing mistakes (SEr ) vary significantly between two
types of probing moments (SMSI : {U = 787688, Z = -2.202, p < 0.05,
r = 0.037}, SEr : {U = 738410, Z = -4.446, p < 0.001, r = 0.076}). In case
of the inopportune moments’ sessions, the typing speed is compar-
atively high (low MSI) and the typing mistakes are comparatively
low. These suggest that (a) when users are typing fast in a session
or (b) when users are more attentive while typing (making few
mistakes), they prefer to skip ESM probes in those moments.

3.2 Frequency-domain Typing Features
We apply Discrete Fourier Transform (DFT) on the ITDs present
in a session S to obtain the equivalent frequency-domain repre-
sentation. Here the session S of dimension n is represented as the
a combination of n periodic signals {xkj + iykj ,∀j ∈ {1, . . . ,n}},
where each real component xkj represents the amplitude of the
respective signal with frequency kj [28]. Since we focus on the
amplitude only, we discard the imaginary part and deal with only
the real part of the coefficients [8]. We compute the resultant am-
plitude xk of the session S for the signal with frequency k Hz as
xk =

∑n−1
j=0 vj × cos(2πk ∗ j/n). For a session S of dimension n,

we repeat this procedure for all the n signals to generate the am-
plitude vector A= {xkj ,∀j ∈ {1, . . . ,n}} as the frequency-domain
representation of S (see Fig. 5). Note that depending on the session
dimension, the cardinality of the amplitude vector may vary across
various sessions. Next, we apply the peak detection algorithm [6]
on this amplitude vectorA and select the top-3 amplitudes2 of every
session S to use them as frequency-domain features. Like Section
3.1, we normalize each of these features using min-max scaling.

Role of features at inopportune moments: In Fig. 6a, we ob-
serve that the total number of peak amplitudes present in a session
are comparatively high in case of sessions tagged as inopportune
1We have the same finding for session duration, MSI and error rates.
2Increasing the number of peak amplitudes beyond 3 does not influence the opportune
moment identification performance significantly.
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Figure 6: Comparison of different frequency-domain characteristics between inopportune and opportune probing moments -
(a) total number of peaks (b) first peak amplitude (c) second peak amplitude and (d) third peak amplitude. This comparison
reveals all these parameters vary significantly (p < 0.001) between these two probing moments.
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Figure 7: Model performance - (a) model-wise F-score. Error bar indicates std. dev.
(b) user-wise F-score
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Figure 8: Model explainability using SHAP
reveals that session length (time-domain),
and peak amp1 (frequency-domain)
have strongest influence in deciding
in(opportune) moment.

moments (with U = 1447084, Z = 27.821, p < 0.001, r = 0.473 for
Mann-Whitney’s U test). Next, from the list of all peaks in a session,
we select top-3 amplitudes and compare those values for opportune
and inopportune probing moments. In Fig. 6b, 6c, 6d, we observe
that the peak values of the top-3 amplitudes significantly vary be-
tween sessions labelled with two kinds of probing moments (with
U = 1467354, Z = 28.735, p < 0.001, r = 0.488 for peak amplitude; U =
1466826, Z = 28.711, p < 0.001, r = 0.488 for second peak; U = 1466200,
Z = 28.682, p < 0.001, r = 0.487 for third peak, respectively). These

highlight that simple frequency-domain analysis of ITD values can
find the difference between different types of probing moments.

4 OPPORTUNE PROBING MOMENT
PREDICTION

Finally, we leverage on the aforementioned time-domain and frequency-
domain features to develop an all-user model (Comb) to predict
the opportune probing moments for self-report collection. We im-
plement Random Forest to train the model by using 100 decision
trees with setting maximum depth of the tree as unlimited, both of
these (large number of trees, maximum depth) help to counter over-
fitting. Since there is data imbalance, we compare the performance
of the proposed model with a personalized baseline model (MC),
which always predicts the majority class for a user. Additionally,
we implement two variants of our proposed model namely TD and
FD, leveraging only on the time-domain and frequency domain
features, respectively.

4.1 Model Performance
In Fig. 7a, we evaluate the proposed model (Comb) using leave-
one-subject-out-cross-validation and obtain an average F-score of
93% (std. dev 12.2%), which comfortably outperforms the baseline
model MC (F-score 87% with a high std. dev. of 23%). Interestingly,
the Comb model does not exhibit significant performance benefit
compared to both the model variants TD and FD (average F-score
91%), as the most discriminating TD model feature (session length,
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see Fig. 8) is highly correlated with all the FD model features (with
avg. Pearson correlation coefficient 0.98). In Fig. 7b, we demonstrate
the user-wise high prediction accuracy of the proposed Comb
model; few users exhibit exceptional F-score which mostly stems
from the presence of very few (e.g. 2) or no presence (e.g. 3, 9, 16,
17, 20, 21) of any inopportune label in their data.

4.2 Model Explainability
We perform explainability analysis of our proposed model using
SHAP (SHapley Additive exPlanations) [18], where Shapley index of
a model feature exhibits its contribution to determine the predicted
class for an instance [17]. In Fig. 8, we compute the shapley index
for each of the features on the test set and show the mean absolute
SHAP values for each feature. This analysis reveals that the session
length (time-domain feature) has the strongest influence, followed
by peak amplitude and second peak amplitude (frequency-domain
feature). Among time-domain features, error rate exhibits moderate
effect, followed by session duration and typing speed, while among
frequency-domain features, third peak amplitude and number of
peaks are found to have a moderate impact on the model.

5 DISCUSSION AND CONCLUSION
Keyboard interaction patterns hide signatures in both frequency
and time domain. Leveraging such patterns, one can identify peri-
ods of inactivity but engaged state of the user suitable for probing
the user for any information. Experience Sampling Method (ESM),
which relies on probing users with a questionnaire, and eliciting
a response, can benefit significantly in increasing the response
rate. The major implication of this work is the ability to develop
smart ESM strategies based on keyboard interaction. In this paper,
we perform an in-the-wild study to log the keyboard interaction
details on smartphone to determine suitable probing moments to
deliver ESM probes. We analyse the collected typing interaction
data both in time-domain and frequency-domain to find that inter-
action characteristics such as text length, typing duration, typing
speed (in time-domain), and number and value of peak amplitudes
(in frequency-domain) significantly vary between the opportune
and inopportune probing moments. Leveraging these, we develop a
machine learning model, which can identify the probing moments
with an average F-score of 93%, thus underscoring the importance
of keyboard interactions while developing smartphone-based intel-
ligent ESM schedules.
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