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Abstract—Smartphone keyboard interaction based emotion
detection systems are used widely to provide value-added services
such as mental health monitoring, keyboard layout optimization,
guided response generation. At the core of these services lie
a machine learning model, which automatically infers emotion
based on keyboard interaction pattern. To train these models,
the emotion ground truth labels are typically collected as emotion
self-report by conducting an Experience Sampling Method (ESM)
based study. However, as responding to repetitive self-report
probes is time-consuming and fatigue-inducing, efficient self-
report collection approaches are essential that avoid probing at
inopportune moments and reduce survey fatigue. To address this
problem, we propose an active learning based framework, ALOE
(Active Learning based Opportunistic Experience Sampling for
Emotion Self-report Collection) that automatically decides to
avoid probing at the unfavorable moments based on the typing
signatures captured from smartphone keyboard interaction ses-
sions. We bootstrap the framework with a few labeled instances
(typing session) and allow the learner to probe (or query) the
user only when it is least confident about an instance (typing
session) and retrain accordingly. This way, we reduce the number
of probes required (and therefore user engagement) and yet
probe at the opportune moments. We evaluate ALOE in a 3-
week in-the-wild study involving 18 participants, who record
their smartphone keyboard interaction patterns and emotion self-
reports during this period. The experimental results demonstrate
that ALOE requires 56% less inopportune self-reports to train
the probing moment detection learning model and yet detects the
probing moments accurately with an average F-score of 93%.

Index Terms—Emotion self-report, Active learning, Experience
Sampling Method, User engagement, Survey fatigue

I. INTRODUCTION

Smartphone typing-based emotion detection systems have
shown potential for different applications such as unobtrusive
mental health monitoring [1]–[4], interface design [5], [6],
guided response generation [7], auto-suggestion usage opti-
mization [8]. At the core of these systems, there is a machine
learning model for automatic emotion inference. To train
these models, different keyboard interaction characteristics are
correlated with the emotion ground truth labels collected as
manual self-reports from the Experience Sampling Method
(ESM) [9], [10] driven study. But as manual self-reporting is
time-consuming, fatigue-inducing, and burdensome, efficient

self-report collection approaches to probe at opportune mo-
ments are required so that the survey fatigue and self-reporting
effort can be reduced.

In the existing literature, many smartphone based
interruptibility-aware notification strategies are developed to
probe at the opportune moments [11], [12]. For example,
Ghosh et al. developed a 2-phase model driven ESM schedule
to optimize the probing rate and self-report timeliness [13].
Fischer et al. showed that participants react faster to probes
when they are delivered immediately after completing a task
on mobile (e.g., reading a text message) [14]. In [15], authors
demonstrated that last survey response, phone’s ringer mode
can be leveraged to identify suitable probing moments. Specif-
ically, in case of smartphone keyboard interaction, the authors
extracted a set of time-domain and frequency-domain features
to demonstrate their utility in opportune probing moment
detection [16]. However, to the best of our knowledge, most of
the prior works overlooked the significance of such signatures
while developing an opportunistic probing strategy using as
few as possible self-reported instances.

The key requirement to develop an opportunistic probing
strategy using few self-reports is to establish that there is
a distinguishing pattern in the keyboard interaction between
opportune and inopportune probing moments. In machine
learning literature, active learning has been used effectively
to reduce the need for a large amount of annotated data
[17], [18]. To develop the model, an active learning strategy
requires a few annotated samples to begin with and later it can
automatically decide the important instances to query for and
fine-tune the model [17]. This helps the model to perform the
desired task with relatively fewer labels. The same approach
can be used for keyboard-based emotion self-report collection.
We envision that (a) developing a base model with a few self-
reports, and (b) gradually improving it based on the newly
acquired self-reports (only when required) can identify the
opportune probing moments accurately and with fewer self-
report requests (and therefore less user engagement).

We, in this paper, propose an active learning based frame-
work ALOE for Experience Sampling Method driven emo-
tion self-report collection for smartphone keyboard interaction
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(Section V). The proposed method aims to identify the suitable
probing moments for a typing session1, based on the keyboard
interaction patterns (not textual content) in that session. ALOE
learns from a few seed sessions (used for initialization) that
there is an observable difference in the keyboard interaction
parameters (e.g., session length, session duration, error rate)
and previous ESM response between inopportune and oppor-
tune probing moments. It leverages these characteristics to
decide when to trigger the probe to the user for emotion
self-report (Section IV). Once the user completes typing in
a session, ALOE decides whether the current moment is
opportune for probing. ALOE adopts the least confidence
query strategy to probe the user for the emotion self-report,
where the model probes the user only when it is uncertain
about its current probing decision, and skips probing when the
model confidently decides the current moment as inopportune.
This not only allows the model to reduce the number of probes
to be responded by the user, but also ensures that probing
is done at the opportune moments only. Along the process,
whenever a new self-report is obtained from the user, ALOE
retrains the model to make it more accurate in detecting the
opportune probing moments.

We evaluated ALOE in a 3-week in-the-wild study involving
18 participants (Section VI). We developed an Android appli-
cation and used it as experiment apparatus during the study
(Section III). The app encompasses a QWERTY keyboard
for tracking typing interactions (not text) and a probing UI
for emotion self-report collection. The interface allows the
user to record one of the four emotions (happy, sad, stressed,
relaxed) after completing a typing session in any application.
Additionally, the self-report UI allows the user to indicate (via
No Response label) whether the current probing moment is
inopportune. During the study, we collected ≈ 2500 labeled
typing sessions, which reveal that typing characteristics (e.g.,
session length, session duration, error rate, typing speed) and
previous self-report vary between inopportune and opportune
probing moments. The active learner (in the ALOE frame-
work) learns these characteristics from a few seed samples
(Section IV-C) and by querying self-reports for the uncertain
sessions retrains itself to detect the opportune moments. It
reduces the inopportune probe self-reports by 56% to train the
learner for probing moment detection (Section VI-B), while
detects the opportune probing moments with an average F-
score of 93% (Section VI-C).

II. RELATED WORKS

The Experience Sampling Method (ESM) is a widely used
tool in psychology and behavioral research for in-situ sampling
of human behavior, thoughts, and feelings [9], [10]. In this
section, we discuss the related literature on interruptibility-
aware mobile-based ESM strategies, and highlight their short-
comings. We also introduce the basic concept of active learn-
ing and its application in different contexts to reduce the
annotation effort.

1Session is defined as the time spent at-a-stretch on a single application.

A. Interruptibility-aware Mobile-based ESM Design

Many emotion detection applications have used smartphone
based emotion self-reports collection strategy as smartphones
offer the flexibility of collecting rich contextual data during
in-situ sampling [19], [20]. The advancements in this field
demonstrate that different contextual information (e.g., loca-
tion, app usage) can be leveraged to probe at the opportune
moments [21], [22]. While the usage of additional contextual
information is effective in designing the interruptibility-aware
ESM approach, these information may not be used in an
emotion self-report collection study due to other limitations
such as privacy concerns [23]. As a result, researchers need to
use only the study specific data during the probing strategy for-
mulation. Specifically, in case of smartphone keyboard based
emotion detection, different keyboard interaction parameters
(e.g., typing speed, error rate) are to be used to detect the
opportune probing moments while probing a user for emotion
self-report [13], [16].

B. Active Learning for Reducing Labeling Effort

The basic idea of active learning is that if a model is trained
intelligently with informative instances, it can perform well
even with less training data [17]. This idea is useful in different
scenarios (e.g., image classification [24], [25], image retrieval
[26], image captioning [27]), where obtaining labels is ex-
pensive (time-consuming, resource-consuming) [28]. Broadly,
there are two types of active learning algorithms - (a) stream-
based, where the unlabeled samples are generated as a stream
of data [29]; (b) pool-based, where a large pool of unlabeled
samples is available [30]. The active learner is initialized with
a set of labeled samples (known as seed samples), and then it
is allowed to select the next unlabeled instance and decide,
whether it should query for the label of that instance. To
select the next unlabeled instance, different query strategies are
used [31]–[33]. Among these, uncertainty sampling is the most
widely used which queries for the instance the model is most
uncertain about [18], [30], [31], [34]. In existing literature,
different notions of uncertainly are used, e.g. margin [34], least
confidence [18], entropy [31].

Summarizing the discussion of the related literature, we
note that while developing an opportunistic probing strategy
based on smartphone keyboard interaction, different interac-
tion parameters (e.g., typing speed, typing mistake) can be
utilized. At the same time, to reduce the number of probes
at the unfavorable times, active learning can be applied. This
suggests instantiating the opportune moment detection model
with few labels (self-reports) and then retrain the model once
additional labels (self-reports) for informative instances are
collected. This approach not only helps to reduce the user
engagement (in terms of self-reports), but also helps to probe
at the opportune moments; which is the objective of this work.

III. FIELD STUDY

A. Experiment Apparatus

We have designed the keyboard app (Fig. 1a) based on
Android Input Method Editor (IME) facility. It is same as
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QWERTY keyboard with additional capability of tracing user’s
typing interactions. We do not store any alphanumeric charac-
ter because of privacy reason. We have also obtained the IRB
approval prior to data collection.

Tracing Keyboard Interactions: We define session as
the time period spent by the user at-a-stretch on a single
application. We record the timestamp of every touch event
within a session and compute the interval between two consec-
utive touch events as Inter-tap duration (ITD). For instance,
we represent a session S of length Sl(= n) as a sequence
of timestamps [t1, t2, t3, ...tn], depicting the respective touch
events, with session duration Sd = tn − t1. We measure
ITD as vi = ti+1 − ti, which reflects the typing speed of
the user; higher value of ITD indicates lower typing speed.
Hence, a session S may be further expressed as a sequence of
ITDs, S = [v1, v2, v3, ..., vn], where vi indicates the ith ITD.
Additionally, we record the usage of the backspace or delete
keys pressed in a session, which helps to identify the amount
of typing mistakes made in a session.

Collecting Emotion Self-reports & Labeling Probing
Moments: We also collect self-reported emotions from users.
Once user completes typing in an application and switches
from the current application, we probe her for the emotion
self-report (happy, sad, stressed, relaxed) as shown in Fig.
1b. We select these emotions based on the Circumplex model
(Fig. 1c) of emotion [35], as they represent largely represented
emotion from separate quadrants, which makes self-reporting
easier for the user. We keep the interface simple by explic-
itly recording emotion and do not consider the intensity of
perceived emotion, which can make self-reporting difficult.
We also keep the provision of No Response, so that user
can skip self-reporting by selecting this option. Whenever the
user reports No Response, the probing moment is considered
inopportune, while any emotion (happy, sad, stressed, relaxed)
response is considered opportune.

B. Study Procedure

We recruited 22 participants (18M, 4F) aged between 20
to 35 years from our university. We installed the application
on their smartphones and asked them to use it for 3 weeks
for regular typing activities and emotion self-reporting. We
also informed that once they complete typing in an application
and change it, they may receive a self-report pop-up, where
they have to record their perceived emotion. They were further
instructed that if the probe appears at an inopportune moment
and they want to skip responding, they should select the No
Response button instead of dismissing the pop-up. However,
it was observed that 4 participants did not provide sufficient
self-reports (≤50), so we dropped these users and performed
the analysis on the remaining 18 (15M, 3F) participants. We
obtained the IRB approval before initiating the user study.

IV. DATA ANALYSIS: KEY FINDINGS

We have collected a total of 2540 sessions. The aver-
age number of sessions per user is 141.1 (std. dev 122.4).
We have recorded 1573 (61.9%) sessions as opportune and

967 (38.1%) sessions as inopportune (Fig. 2). This finding
demonstrates that a large number of sessions are recorded
as inopportune. Therefore, availability of a mechanism to
automatically identify these moments based on the interaction
pattern and avoid probing at the inopportune moments can
significantly reduce the number of probes. Next, we discuss
the interaction characteristics to detect the probing moments.

A. Typing Features for Probing Moment Detection

Guided by earlier works [13], [16], we extract a set of typing
features of a session S as (a) typing speed (SMSI ), (b) error
rate (SEr), (c) session length (Sl), (d) session duration (Sd) to
characterize the difference between opportune and inopportune
probing moments. We represent the typing speed in a session
S as Mean Session ITD (MSI), where we compute the mean
of all ITDs present in session S as SMSI =

∑n−1
i=1 vi

n−1 . We
also compute the typing mistakes performed in a session by
counting the total number of backspace (or delete) key pressed
in a session (say, c), and compute as SEr = c

n . To handle
the inter-subject variability [36], we normalize each feature
as x′ = x−min(X)

max(X)−min(X) , where X ∈ {SMSI , SEr, Sl, Sd} is
the set of values recorded for a feature across all individuals,
x is one instance of the set X , min(X), max(X) indicate
minimum and maximum of the set X .

B. Previous Response Feature for Probing Moment Detection

We also use one self-reporting characteristic to distinguish
between opportune and inopportune probing moments. Earlier
works suggest that previous ESM response can be used as a
good indicator of current ESM response [13]. Accordingly, we
use the self-report associated with (n− 1)th typing session as
a feature to determine the response for nth session. We use
this feature as a binary one, if the self-report is one of the four
emotions (happy, sad, stressed, relaxed) the value is set to 0,
otherwise (for No Response) the value is set to 1.

C. Feasibility Analysis for Reducing Inopportune Probes

We aim to develop a machine learning model that (a) detects
the opportune probing moments based on keyboard interaction
patterns, and (b) uses as few as possible training samples from
inopportune moments so that the user needs to respond to
fewer self-reports (and therefore the survey fatigue is reduced).

To investigate this, we analyze the collected dataset further
in terms of underlying pattern of the feature values. Since we
represent every data point (session) in terms of four typing
based features and one emotion response feature, first we
reduce the dimensionality of the data to visualize it in a 2-
D plane. We apply PCA (principal component analysis) [37]
on the collected dataset (by setting number of principal
components to two) and show the outcome in a scatterplot
in Fig. 3. The figure reveals that for many of the inopportune
moment samples the value of first principal component (PC1)
is relatively large. For example, it is observed that ≈ 30%
of the inopportune data points have PC1 value greater than
or equal to 100 (and no opportune moment sample has a
value greater or equal to 100). This points to the fact that,
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Fig. 1: Experiment Apparatus - (a) The app keyboard was used to trace typing
interactions, (b) the self-report UI was used to collect the emotion self-report, (c)
the UI was designed guided by the Circumplex model of emotion

Fig. 2: Distribution of inopportune
and opportune sessions

Fig. 3: The visualization reveals a noticeable difference be-
tween the inopportune and opportune probing moments, which
may be leveraged by a machine learning model to reduce the
requirement of large number of inopportune data points.

to discriminate the opportune and inopportune moments, the
machine learning model may not need a large volume of
inopportune labels from this region. This helps to significantly
reduce the number of inopportune data points required to train
the machine learning model.

In summary, we observe that although the participants
reported a large number of inopportune probes, there is a
noticeable difference between the opportune and inopportune
probing moments based on the identified features. Therefore,
it may be possible to learn this difference using a machine
learning model with relatively few number of inopportune
data points, which motivates us to develop the active learning
framework as described next.

V. ALOE: ACTIVE LEARNING BASED OPPORTUNISTIC
EXPERIENCE SAMPLING FRAMEWORK

In this section, we discuss the ALOE framework (Fig. 4). In
the first step of the framework, we use a few typing sessions
(marked as opportune or inopportune) as seeds to train a
machine learning model for detecting the opportune probing
moments. This is the base model of the proposed framework.
At the end of the base model construction (using the seed
sessions), new typing sessions keep on getting generated from
users’ typing activities. These typing sessions are generated as
streams and it is to be decided whether the probing moments

for these typing sessions are opportune or not. To decide
that, each of the typing sessions (as generated) is sent to
the base model. The base model returns its confidence about
detecting the current session as opportune or not. If the model
responds with a high confidence value that the current session
is inopportune, we do not ask the user for a self-report.
Otherwise, we probe the user for the self-report and retrain the
base model with the newly obtained user input. This way we
decide the probing moment for every typing session and retrain
the base model as often as required. This strategy not only
allows to avoid probing at the inopportune moments, but also
improves the learner in detecting opportune probing moments
by retraining. We discuss each of these steps in detail next.

Fig. 4: The architecture of the ALOE framework. First, a set
of typing sessions (marked as opportune or inopportune) are
identified and used as seed to train the model of the framework.
After that, as new typing sessions are generated as stream,
those are sent to the model to decide if the session is opportune
or not. If the model is confident that the current session is
inopportune, the user is not probed; otherwise the user is
probed. Whenever a new response is collected from the user,
the model is retrained to make it more accurate in detecting
the opportune probing moments.

Seed Sample Identification: We use a set of typing sessions
(marked as opportune or inopportune) as seed samples. In this
case, as typing sessions are generated with time, based on
users’ typing activities, we do not have the entire dataset avail-
able from the beginning. Therefore, we decide to accumulate
initial x% (we set the value of x in the experimental setup,
section VI-A2) typing sessions from each of the users to gather
the seed samples.
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Base Model Construction: ALOE consists of a machine
learning model that decides whether the probing moment for a
typing session is opportune or not. To train the model, we use
the identified seed samples. We extract the same set of features
from every typing session as mentioned earlier (section IV-A,
IV-B). We implement Random Forest to train the model using
100 decision trees with setting the maximum depth of the tree
as unlimited, both of these (a large number of trees, maximum
depth) help to counter overfitting. After training the model
with seed samples, we have the base model of the framework
ready for deciding the probing moment for a typing session.

Opportunistic Probe Triggering Decision: Once the base
model is trained with the seed typing sessions, the subsequent
typing sessions need to be marked as opportune (or not) with
minimal user involvement. As typing sessions are generated
like a stream, we apply selective sampling [38] on this data
stream to decide, for which typing session the user needs to
be probed for emotion self-report. In specific, every newly
generated typing session is sent to the base model to find
its confidence in identifying the current session as opportune
(or not). We adopt Least Confidence (a category of Posterior
probability-based Strategies) [39] strategy while probing the
user for a typing session. In this strategy, we probe the user
for a typing session if the probability of detecting that typing
session as inopportune is less than 0.5. We select 0.5 as the
threshold as we have two classes only (inopportune and op-
portune). Notably, if the probability of detecting inopportune
moment is very small (i.e., the probing moment is likely to
be opportune), the user is probed. We want to collect samples
anyway at these moments because the moments are opportune
(therefore suitable for probing). This way we could avoid
probing the users in some of the inopportune moments (when
the model is confident) and reduce the number of probes to
be attended by the user.

Model Retraining: We retrain the base model on every
occasion, whenever a response is collected from the user for a
typing session. This allows improving the learner in detecting
the opportune probing moments accurately. The probing and
retraining are stopped once the required number of typing
sessions are marked. At the end of this phase, we have a
machine learning model capable of identifying the probing
moment as opportune (or not) based on typing interactions.

VI. EVALUATION

In this section, we discuss the experimental evaluation of
ALOE. First, we describe the experiment setup, which includes
the description of the baselines, evaluation strategy, and the
performance metrics. Later, we analyze ALOE’s performance
in reducing inopportune probes and detecting opportune prob-
ing moments. We also discuss the influence of seed samples,
influence of retraining, and the explainability of ALOE.

A. Experiment Setup

1) Baselines: We compare the performance of ALOE with
the following baseline models as proposed by Ghosh et. al
[16]. The authors proposed to combine different time-domain

and frequency-domain characteristics extracted from typing
sessions to determine the opportune probing moments.

• Time-domain (TD): This model extracts a set of time-
domain features (session length, session duration, average
session speed, error rate) from typing sessions to train a
Random Forest based model for detecting the opportune
moments.

• Frequency-domain (FD): In this model, the authors
proposed to transform the typing session details to fre-
quency domain first applying Discrete Fourier Transform
(DFT) [40]. Then, the transformed values are passed
through a filter to purge the complex components. Later,
a peak detection algorithm is applied to identify the top-
3 amplitudes. The top-3 amplitudes and the number of
peaks are used as features to train a Random Forest model
to detect the opportune probing moments.

• Combined (Comb): This model consists of both the
time-domain and frequency-domain features. It also im-
plements a Random Forest based model.

2) Evaluation Strategy: To train and evaluate ALOE, we
split the dataset into 3 parts - (a) seed samples, (b) oppor-
tunistic query samples, and (c) test samples. To train the base
model of the active learner in ALOE, we combine the first
20% typing sessions from every user. The next 60% typing
sessions for each user are used opportunistically to query user
for additional self-report (this allows to reduce the number of
probes the users need to respond). Whenever a new self-report
(inopportune or opportune) for a typing session is acquired
the base model is retrained. At the end of this 60% typing
sessions, we have the fully trained model for the user, which
is evaluated using the remaining 20% typing sessions of the
user. These steps are repeated for every user.

In order to train the baselines, we have used initial 80%
typing sessions (marked as opportune or inopportune) of each
user. This segment of data for every user is combined to form
the training set. However, for evaluation, we evaluate every
user independently. The final (left out) 20% typing sessions
of every user is treated as a testing set (for the specific user).

3) Performance Metrics: We use the following metrics to
evaluate ALOE,

F-score: We use F-score as the metric to decide the
opportune probing moment detection performance. First, we
compute the user-wise F-scores, which are averaged over all
users to report the performance of ALOE.

Inopportune Probe Reduction: To compute the inoppor-
tune probe reduction in ALOE, we find out how many fewer
inopportune probes are answered by the users in comparison to
the baselines. The baselines use self-reports from 80% sessions
for training, while ALOE uses self-reports from initial 20% (as
seed) and next 60% opportunistically. Therefore, the reduction
stems from answering fewer inopportune probes from the
opportunistic query samples. Specifically, in the 80% samples
(20% seed, and 60% opportunistic query samples), if nALOE ,
nbl are the number of inopportune probes answered by the
users in ALOE and the baselines respectively, the reduction is
computed as (nbl−nALOE)∗100

nbl
.
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Fig. 5: ALOE’s inopportune probe re-
duction performance for every user. For
83% of the users, there is a reduction
of at least 50%, leading to an average
reduction of 56%.

Fig. 6: ALOE’s opportune moment detection performance - (a) comparison with
baseline F-score. Error bar indicates std. dev. (b) user-wise F-score

B. Performance Analysis: Inopportune Probe Reduction

In this section, we analyze the performance of ALOE in
reducing the inopportune probes. We show the inopportune
probe reduction using the ALOE framework in Fig. 5. It is
observed that 55% of the users have a reduction of at least
60% and 83% of the users have a reduction of at least 50%. At
the same time, for a few users (11, 15), the inopportune probe
reduction is relatively less (≤ 25%). Overall, we obtain an
average reduction of 56.8% (std dev. 18%). But the important
question, whether the inopportune probe reduction influences
the probing moment detection performance, is discussed next.

C. Performance Analysis: Probing Moment Detection

We show ALOE’s performance in detecting the opportune
probing moments in Fig. 6. First, we compare the performance
of ALOE with the baselines in Fig. 5a. ALOE returns a
average F-score 93% (std. dev: 7.9%) outperforming all the
baselines (TD: 88.1%, FD: 85.2%, Comb: 89%). We also
report the user-wise F-score in Fig. 5b. It is observed that for
all but 2 users (2, 8), the F-score is more than 80% leading
to an average F-score of 93%. Notably, ALOE achieves
these superior results despite being (re)trained with the fewer
inopportune labels in comparison to the baselines.

D. Performance Analysis: Influence of Seed Samples

In this section, we analyze the performance of ALOE both
in terms of probing moment detection and inopportune probe
reduction with increasing number of seed samples (Fig. 7).
We observe that with increasing number of seed samples,
there is not much variation in probing detection accuracy.
We envision this happens because the difference between
inopportune and opportune probing moments (as shown in
Fig. 3) can be easily identified using a few seed samples
only and therefore increasing seed samples does not influence
model performance much. On the contrary, with increase in
the number of seed samples, the inopportune probe reduction
rate drops (as the user needs to respond more number of self-
reports during the seed collection phase). Therefore, it may be
prudent to instantiate the model with approximately 15% to

20% seed sessions to obtain a high probing moment detection
performance and a high reduction in inopportune probing rate.

E. Performance Analysis: Influence of Retraining

We also evaluate the influence of retraining on opportune
probing moment detection performance. To achieve this, we
keep the seed samples fixed (20%) and vary the number of
opportunistic query samples. With the increasing number of
query samples, the model gets more opportunity of retraining.
We show the probing moment detection performance with
increasing opportunistic query samples in Fig. 8. It is observed
that with increase in the query sample, the probing moment
detection performance improves gradually. It is also noted with
increasing amount of the query sample, the standard deviation
in user-wise F-score reduces indicating that variation of F-
scores for different users diminishes. This highlights that using
the base model (trained only with seed samples) does not
return high probing moment detection performance; retraining
it as and when required based on the opportunistic query
samples improves the probing moment detection performance.

F. Performance Analysis: Influence of Threshold

We assess the impact of the variation of the probing
threshold on probing moment detection and inopportune probe
reduction in Fig. 9. It is observed that when the threshold is
less (i.e., the probing criteria is conservative), we end up prob-
ing fewer times resulting in higher reduction in inopportune
probing. But this reduces the probing moment detection perfor-
mance (90%). However, as we increase the threshold (i.e., the
probing criteria becomes relaxed), we end up probing more
(resulting in comparatively less saving in probe reduction).
But this provides the learner to gather more self-reports and
retrain accordingly. As a result, the probing moment detection
performance improves. However, beyond a certain value of
threshold (≥ 0.4), the probing moment detection performance
does not improve, but the probing reduction drops. Therefore,
a threshold in the range of 0.4 to 0.5 can be used.

G. ALOE Framework Explaianability

We perform the explainability analysis of the proposed
model in ALOE using SHAP (SHapley Additive exPlana-
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Fig. 7: Variation in probing moment de-
tection performance and inopportune probe
reduction with different amount of seed
sample to train the base model.

Fig. 8: Variation in probing moment
detection performance with different
amount of opportunistic query sam-
ples to retrain the base model.

Fig. 9: Variation in probing moment
detection performance and inopportune
probe reduction with different thresh-
olds.

Fig. 10: Explainability analysis using SHAP reveals that
previous response and session length are the top two features
in detecting opportune probing moments.

tions) [41], where Shapley index of a model feature exhibits
its contribution to determine the predicted class for an instance
[42]. In Fig. 10, we compute the shapley index for each
of the features on the test set and show the mean absolute
SHAP values for each feature. This analysis reveals that the
previous response has the strongest influence in classifying the
opportune probing moments followed by the session length.
Session duration is found to have a moderate impact, while
session typing speed and session error rate have minimal
influence on the model performance.

VII. DISCUSSION AND FUTURE WORKS

The findings from initial explorations of ALOE are promis-
ing. However, we envision following aspects need to be
considered for applying ALOE in an online setting or to extend
it for other ESM studies.

Deployment Considerations: To deploy ALOE in online
setting, we need to figure out (a) the number of seed samples
and (b) the retraining frequency. We recommend the initial
20% to 30% of self-reports (acquired from a self-report col-
lection study) can be used as the seed to initialize the model,
as it provides good probing moment detection performance
and high probing reduction rate (Fig. 7). The frequency of
retraining can be decided based on the data volume or when
the distribution of stream data changes significantly than
training data to overcome the retraining overhead [43], [44].

Reducing Seed Selection Overhead: In the recent past,
zero-shot learning, one-shot learning, and few-shot learning
paradigms are used effectively to tackle the challenge of an-
notating one or a few instances for the classification task [45],
[46]. We also aim to borrow concepts from these approaches
so that the manual self-report requirement of seed samples can
be reduced significantly in our future work.

Generalizing ALOE for other ESM studies: The crux
of ALOE lies in figuring the difference between opportune
and inopportune probing moments. The investigator, who is
designing the study may be able to identify the parameters
(features) leading to suitable probing moments. Once these
factors are identified and the learner is trained with the seed
samples, the learner should be able to identify the informative
samples and retrain. So, we believe with initial guidance from
the experimenter the proposed framework can be extended to
other ESM-driven studies also.

VIII. CONCLUSION

In this paper, we propose an active learning-based frame-
work ALOE for experience sampling, which opportunistically
decides to probe users for emotion self-reports based on
smartphone keyboard interaction patterns. The active learner
embedded in the framework is instantiated with a few labeled
typing sessions. Based on these sessions, the learner figures
out the key differences between inopportune and opportune
sessions in terms of typing session length, session duration,
error rate, typing speed, and previous self-report. Leveraging
these, it decides to query (or probe) the user based on the
least confidence strategy (only for the uncertain sessions) in a
selective sampling approach for the stream of typing sessions
produced from the user’s typing activities. This approach
allows the learner to learn from more informative instances
and discard probing for the confident ones. Thus, it provides
an opportunity to reduce the number of probes yet ensures
that the probing is performed at an opportune moment only.
The validation of the ALOE framework with a 3-week in-the-
wild study involving 18 participants reveals that it needs 56%
fewer inopportune self-report probes to train the model and
yet detects the opportune probing moments with an average
F-score of 93%.
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