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Abstract—Recent advances in the field of wearable sensing
has promoted the emergence of many health tracking devices,
including heart rate monitors. Heart rate monitors are commonly
either chest-based or wrist-based. Currently, it is unclear whether
there is a substantial difference in the performance of these
different heart rate monitors. To determine the difference in
the performance, in this paper, we compare two chest-worn
heart rate monitors and one wrist-worn heart rate monitor.
Our initial results indicate that there is substantial difference
between the devices – the root mean square error between devices
can be above 10 beats per minute. However, even though there
is difference in performance of different heart rate monitors,
yet each of these devices are capable of detecting stress (using
an machine learning model) with a F1-score of above 0.8. In
this paper, we also introduce the idea of formally verifying
the rules obtained from the machine learning classifier; such
formal verification will enable improving the explainability and
confidence of the outcome of the machine learning models.

Index Terms—Heart Rate Variability, Stress detection, mobile
health (mHealth), smartwatches, heart rate monitors

I. INTRODUCTION

With the advancement in wearable sensing technology, it is
gradually becoming possible to monitor various health-related
outcomes, one among which is an individual’s heart rate.
Measuring the heart rate is beneficial for detecting outcomes
and issues like arrhythmia [1], the physical activity state of an
individual [2], or even their physiological stress levels [3]. Two
common approaches for measuring the heart rate and the heart
rate variability are via the electrocardiogram (ECG) sensors
and the photoplethysmogram (PPG) sensors. Devices such
as chest-worn heart rate monitor usually measure continuous
heart rate of an individual through ECG, while a wrist-
worn device commonly uses a light-based PPG approach to
continuously determine one’s heart rate measurements.

It is commonly perceived that a chest-worn ECG device pro-
vides more accurate heart rate readings as compared to a wrist-
worn PPG-based device. In the past, we extracted features
from a chest-worn heart rate monitor’s data to detect whether
an individual was experiencing instantaneous physiological
stress [3]. We found that the chest-worn devices performed
reasonably well in detecting stress [4]. However, chest-worn
heart rate monitoring devices are less commonly used as
compared to wrist-worn devices such as smartwatches and
fitness bands [5]. Although extracting heart rate data from
wrist-worn devices is possible, however, currently researchers

Fig. 1. Different heart rate monitoring devices might output different heart
rate values, which in turn might affect the performance of an automatic
physiological stress detection algorithm.

have varied opinion about the performance of the wrist-
worn devices [6], [7]. Thus, it is currently unknown whether
(i) a wrist-worn device can provide similar performance in
capturing the raw heart rate data as a chest-worn device, and
(ii) can we use the heart rate data extracted from different heart
rate monitoring devices for detecting stress under exactly the
same context? We pictorially show this in Fig. 1.

This paper aims to determine whether the two category of
heart rate monitoring devices – chest-worn heart rate monitors
and wrist-worn heart rate monitors – provide same or similar
heart rate readings, and whether it is possible to use the heart
rate readings provided by each of the devices to determine
whether an individual is undergoing physiological stress. To
this end, in this paper, we compare three commonly used heart
rate monitoring devices – one wrist-worn fitness band, and
two chest-worn heart rate monitors. Specifically, we compare
the performance of a Garmin Vivosmart 4 Smartwatch,1 a
Polar H10 Heart Rate Monitor,2 and a Garmin HRM Dual
Heart Rate Monitor3 in two aspects: (i) whether the heart

1https://www.garmin.co.in/products/intosports/vivosmart-4-black-large/.
Accessed: 22-Nov-2021.

2https://www.polar.com/en/products/accessories/H10 heart rate sensor.
Accessed: 22-Nov-2021.

3https://www.garmin.com/en-US/p/649059. Accessed: 22-Nov-2021.
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rate readings obtained from these devices are similar, and
(ii) whether the three devices’ physiological stress detecting
performance are similar. We will like the readers to note that
in this paper we do not propose any novel stress detection
algorithm, or improve any existing stress detection algorithm.
Rather, this paper focuses on comparing the difference in
heart rate readings and stress prediction (using an machine
learning model) for each of the three devices. Additionally,
most existing physiological stress detection works rely on
empirical evaluation to determine physiological stress. In this
paper, we introduce a notion of formalism for the stress
detection mechanism. We provide an initial insight about how
we can take a formal verification approach to confirm the rules
that are empirically determined. Such formal verification of
rules will be a stepping stone towards explainability of rules
that we empirically obtain for physiological stress detection.

The key contribution of this paper are:

• This paper compares the output of three common, off-
the-shelf heart rate monitors. We conducted a user study
with 5 participants who wore the three devices while
carrying out a laboratory-based study. We compared the
heart rate readings obtained from the three devices for
the 5 participants and observed that the root mean square
error (RMSE) between readings of the two chest-worn
heart rate monitors was 5.2 beats per miute (BPM), while
the RMSE between the Polar H10 heart rate monitor and
the Garmin Vivosmart 4 smartwatch was 10.23 BPM.

• In the laboratory study, participants were introduced to
three different types of stressors. We collected sensor
data (e.g., heart rate, R-R interval) from these devices
and used a machine learning model to detect stress. We
observed that the difference in F1-score of detecting stress
by the three devices was within 5%. This shows that it
is indeed possible to use any of the devices for detecting
physiological stress.

• We extracted one rule that was generated by the machine
learning model for detecting ‘stressed’, and one that was
used for detecting ‘not stressed’. We describe a formal
verification approach that can be used to validate the rules
generated by the Random Forest based machine learning
classifier for determining physiological stress.

II. BACKGROUND AND RELATED WORK

In this section, we first describe how heart rate and stress
are commonly measured. Traditionally, heart rate measurement
has been ECG-based, where 12 leads are connected to several
body parts of an individual. These leads capture the cardiac
electrical activity, i.e., the polarization and depolarization of
the atrium and the interventricular septum [8]. These electrical
activities are commonly represented by the PQRST wave,
and the distance between two consecutive waves is measured
by measuring the distance between the R of the two waves.
This distance is called the R-R interval and is measures in
milliseconds. The two chest-worn ECG devices that we used
in our study output the heart rate data in beats-per-minute,

and the R-R interval data in milliseconds. An orthogonal
approach for measuring the heart rate and heart rate variability
is via the PPG sensor. The PPG sensing mechanism relies on
measuring the blood volume change during the cardiac cycle.
This measurement is done by projecting a light beam towards
an artery – the amount of light absorbed changes based the
blood volume. The blood volume in the artery changes based
on the cardiac cycle. By measuring the instantaneous blood
volume level, one can determine the moment in the cardiac
cycle that the PPG sensor is measuring.

Wearable-based heart rate measurement: Capturing the
heart rate using the 12 leads ECG approach causes mobil-
ity issues. More recently, researchers have worked towards
capturing the heart rate data using either wearable devices
or infrastructure placed devices [9], [10]. Among wearable
devices, researchers have experimented with both ECG sen-
sors [9], as well as PPG sensors [11]. Researchers have
explored both custom built devices as well as commercial
off-the-shelf devices, and have measured and compared the
performance of these devices in various settings [12]. Some
have even compared the performance of multiple studies to
demonstrate reproducibility [3]. Phan et al. compared the
performance of a smartwatch with a pulse oximeter and an
ECG device [6]. They observed that the performance of all the
devices were similar. Contrary to Phan et al.’s finding, Wang
et al. found that the devices have differences in outcomes [7].
None of these studies, however, compared the performance of
the devices while inducing stress. In our study, we measure
the heart rate data from three devices simultaneously, while
inducing physiological stress.

Stress detection: Over the years, several researchers have
demonstrated the possibility of detecting stress using numer-
ous approaches [13], including via the heart rate informa-
tion [14], the speech and galvanic skin response (GSR) [15].
Researchers have performed physiological stress detection
studies with various demographic groups. For example, King
et al. detected stress levels of pregnant women [16], while
Healey and Picard detected the stress level of drivers [12],
and Egilmez et al. detected the stress levels of college stu-
dents [17]. Researchers have explored both in-laboratory data
collection, as well as free living data collection [18], [19]. We
have currently performed a study similar to Mishra et al.’s
study [9]. The stressors in our study (described in Section III)
were used in several prior studies. Specifically, the socio-
evaluative stressors was used by Hovsepian et al. [19], the
mental arithmetic stressor was employed by Mishra at al. [9],
while the ice bucket stressor was used by Egilmez et al. [17].

III. METHODOLOGY

We next describe the methodology adopted in this study.
Dataset: For this study, we recruited 7 participants (4 males, 3
females, aged between 25 years and 35 years), either from our
lab, or from among the family members of one research team
member. Participants were asked to wear the three devices
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Fig. 2. Series of activities performed by participants in the study protocol

while performing some in-lab activities. The three devices
included: (i) Polar H10 Chest Monitor: This is a chest-worn
device device capable of collecting heart rate in BPM at a
precision of 1 second, and the R-R intervals in milliseconds;
(ii) Garmin HRM Dual Chest Monitor: Similar to the Polar
H10 Chest Monitor, this device also collects heart rate in BPM;
and (iii) Garmin Vivosmart 4 Smartwatch: This is a fitness
band that can measure heart rate, blood oxygen level, stress
level, sleep and also energy throughout the day.

We discarded data collected from 2 participants (1 male, 1 fe-
male) because for one participant, one of the chest-worn heart
rate monitor’s strap was loose – we did not get any meaningful
readings from the participant, while for another participant, the
chest-worn device re-positioned itself, resulting into erroneous
reading for a part of the study. For the 5 participants, the
average duration of the study was 43 minutes(min 41 minutes,
max 45 minutes).

Study Protocol and Data Collection Procedure: We col-
lected the data in a laboratory setting. Participants wore the
three above-mentioned devices and performed the following
tasks: First, we instructed the participants to rest for 5 minutes.
As observed by several prior works, including ours, an initial
prior of resting removes any residual stress that might remain
from a participants’ previous tasks. It also helps collecting the
baseline heart rate readings. Next, participants were introduced
to the following stressors: (i) Socio-evaluative Stressor, where
the participant was asked to publicly speak on a topic for 3
minutes. The participant was provided with the topic during
the study and we gave them 2 minutes to prepare, (ii) Mental
Arithmetic Stressor, where participants were asked to count
from 1000 to 1 in steps of -13, and (iii) Physical Stressor,
where participants were asked to dip their hand in an ice
bucket for up to 5 minutes. The participants were allowed
to rest for 5 minutes between each of the stressors. Finally,
to collect the heart rate readings during an active phase, we
asked the participants to walk briskly for 2 minutes, and fast
for 3 minutes. Fig. 2 pictorially depicts the study protocol for
data collection process.

We developed an Android-based smartphone application to
collect data from each of these wearable devices over a
Bluetooth Low Energy (BLE) connection. This application ran
on 3 different smartphones and collected the heart rate data
and the R-R intervals from each of the devices. We used the
LabFront tool4 to extract the data from the Garmin Vivosmart 4
Fitness Band, while we collected the data from chest monitors
i.e. Polar H10 and Garmin HRM Dual over BLE.

Data Cleaning and Processing: We designed our evaluation
protocol to utilize readings coming at a per-seconds duration,
i.e., one reading per second. The two chest-worn devices
provided the heart rate in BPM and the R-R interval between
consecutive beats. The Polar H10 generated one reading per
second, and thus there was no need of further pre-processing.
Unlike the Polar H10 device, the HRM Dual Pro produces two
readings per second. We averaged the two readings produced
in a second to obtain one single reading every second. Unlike
the chest-worn devices, the smartwatch samples the PPG
sensor at 50 Hz and produces one heart rate reading every 15
seconds. Additionally, it also provides the R-R intervals. We
utilized the R-R interval data to obtain the heart rate reading
from the smartwatch, at a granularity of one second.

We first clean the data obtained from these devices. The
cleaning process includes removing any invalid data – i.e.,
readings where the heart rate data is below 55 or above 220
bpm. Additionally, if there are missing readings, we inter-
polated the data based on previous and subsequent readings.
We next pre-processed the cleaned data. To counter the inter-
user difference in the heart rate readings, we used the min-
max normalization approach to normalize the data. Min-max
normalization transforms the heart rate data to a range [0,1].
At the end of the cleaning and pre-processing step, we had
13,054 data instances from the 5 participants.

Feature Extraction and Ground Truth Labeling: We
grouped 60 one-second readings from each of the devices
into a 1-minute window. There was a 50% overlap between
subsequent 1-minute windows. For each 1-minute window,
we computed several time-based features from both heart
rate data, as well as the R-R interval data. These features
were similar to features extracted by Mishra et al. in [9].
Specifically, we computed the maximum heart rate, mini-
mum heart rate, mean heart rate, median heart rate, standard
deviation, 80th percentile, 20th percentile features from the
heart rate variability data. From the R-R interval data, we
computed features similar to the ones for heart rate. However,
we computed one additional feature – root mean square of
successive differences (RMSSD) for the R-R interval. RMSSD
is computed by subtracting subsequent R-R interval values,
squaring the value and computing the square root of the mean
of the values. The windows extracted from ‘Rest’ periods were
labelled as ‘Not Stressed’, while readings from the ‘Stressor’
periods were labelled as ‘Stressed’.

4https://www.labfront.com/. Accessed 13-Dec-2021.
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Fig. 3. Comparison of difference of performance of the two chest-worn HRMs
in capturing the heart rate reading for all participants. The dotted line indicates
the 95% confidence interval of the differences.

Model Construction: We used the above-mentioned features
to train a Random Forest model (as implemented in the Scikit-
learn library5) for stress detection (binary classification). To
ensure the generalizability of stress detection, we train a
person-independent model. We train separate models for each
device for stress detection based on the features extracted
(using the data collected from that device only). We obtain
output from each of the three devices independently, i.e., each
device provides a classification output every 30 seconds (as
there is a 50% overlap between windows).

IV. EVALUATION

In this section, we discuss the evaluation approach, and we
compare the performance in (a) heart rate measurement and
(b) stress detection across devices.

Evaluation Approach: Prior work has shown that the output
of a Polar heart rate monitor is comparable to heart rate reading
obtained from an ECG monitor. Therefore, we considered the
Polar H10 as the baseline, and computed the RMSE for the
raw heart rate readings obtained from the other two devices.

To compare the performance of the three devices’ capability
of detecting stress, we performed a leave one person out cross
validation (LOPOCV) using the data obtained from each of the
devices. Since we do not aim to demonstrate the robustness
of our model, but rather compare the performance of the
different devices, a LOPOCV performed with data from five
participants should suffice. We used precision, recall, f1-score,
and accuracy as the evaluation metrics of stress detection for
each of the three devices.

Heart Rate Measurement Comparison: We compared the
output of heart rate at a per-second granularity for each of
the 5 participants. Fig. 3 presents the Bland Altman plot
between the Polar H10 and the Garmin HRM Dual. A Bland
Altman plot allows visualizing the relationship between data

5https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html. Accessed: 24-Nov-2021.

TABLE I
ROOT MEAN SQUARE ERROR BETWEEN THE HEART RATE READINGS

OBTAINED FROM THE POLAR H10 DEVICE AND THE OTHER TWO DEVICES.

Device RMSE (bpm)
Garmin HRM Dual 5.2
Garmin Vivosmart 4 10.23

TABLE II
PERFORMANCE OF THE THREE DEVICES IN DETECTING STRESS

Device Accuracy Precision Recall F1-score
Polar H10 0.85 0.85 0.84 0.85
Garmin HRM Dual 0.81 0.88 0.76 0.82
Garmin Fitness Band 0.83 0.87 0.74 0.80

obtained from two devices [20]. We observe that the two
standard deviation limit of agreement between the two devices
is within ±10 bpm. To determine whether they are actually
within acceptable limits, we computed the RMSE between the
readings of the Polar H10 device and the other two devices.
Overall, we observed that the RMSE between the Polar 10
and the Garmin HRM Dual was 5.2 BPM, while the RMSE
between the Polar H10 and the Garmin Vivosmart 4 was 10.23
BPM for all the participants. We report this finding in Table I.
Although the mean difference of heart rate readings is not
high, in future it will be interesting to determine scenarios
where the instantaneous difference is high, and if approaches
can be taken to reduce the error.

Physiological Stress Detection Comparison: We compare
the stress detection performance of the models constructed
using the data collected from different devices in Table II. We
observe that the F1-score of the three devices are between 0.8
and 0.85. Interestingly, although the smartwatch has a lot of
deviation as compared to the Polar H10 device, yet, it is able
to detect stress similar to the other devices. This increases
the possibility of using smartwatches in future studies for
monitoring physiological stress. One must however note that
the recall of the smartwatch is low as compared to the other
devices. Although the sample size currently might be small
to make any conclusive decisions, however, we will have to
identify approaches to improve the smartwatch’s recall.

V. FORMALISM

Now that we have a model that has been derived from sensor
data to detect physiological stress in an individual, it is
important that we can explain why the model takes specific
decisions. We next provide an initial intuition about how we
can perform a formal verification of the model.

Let vR1 and vR2 be two R values from the PQRST wave
of a cardiac cycle. The R − R interval between these two
values is denoted by K, i.e., K is of the form vR1

− vR2
.

For every two R points in a dataset we can get R − R
interval. If any of the R − R interval is strictly less than a
threshold level, say, BL, which is empirically obtained, then
it is possible that the person is asserted to be experiencing
stress. Now we characterize stress predicate which takes the
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Fig. 4. Framework for formal verification

R−R interval input and gives a Boolean output. Therefore, the
stress property is of the form ∀i, 1 ≤ i ≤ n, vRi

−vRi+1
< BL

→ ∀i, 1 ≤ i ≤ n∃vRi
− vRi+1

s(vRi
− vRi+1

). Note that we
have encoded the stress property using first order predicate
calculus semnantics.

Similarly, we can write the ‘not-stressed’ property, which is the
converse of the ‘stressed’ using the following form ∀i, 1 ≤ i ≤
n, vRi

−vRi+1
> BL→ ∀i, 1 ≤ i ≤ n∃vRi

−vRi+1
¬s(vRi

−
vRi+1).

As described in the previous sections, using the data and the
machine learning classifier, we get the rules that are generated
automatically. Now let us take one rule (one branch from
one of the trees in the Random Forest classifier), which is
generated automatically. The rule states that if the mean heart
rate is greater than 0.35 which is computed by the classifier,
and the standard deviation of data in the window is greater
0.05, then the individual is undergoing ‘stress’.

From the data one of the stress rule is of the form
avg(HeartRate) > 0.35 ∧ stdev(Heartrate) > 0.05. Now
we characterize avg(R − R). Let valR−R be the function
which takes two R picks and generates integer. Formally,
we can write as valR−R → R. Therefore, we can rewrit-
ten avg(R − R) is of the following form ∀i, 1 ≤ i ≤
n,

∑n
k=1 val(vRi − vRi+1)/T .

Now, using automated theorem prover (Z3),6 we check the
the containment (v) of formal property which is described
above and the rules for stress which is generated empirically.
If the theorem prover outputs ”yes”, it implicates the rule
satisfies the formal stress property. Similarly, we can check
the containment for non-stress property. The overall workflow
for formal verification framework is given in Fig. 4. We can
use such an approach in the future to determine which rules are
effective in determining stress. This will also help explaining
the models that we empirically generate.

VI. DISCUSSION AND FUTURE WORK

While we, in this paper, show that it is possible to detect
stress from both wrist-worn devices, as well as chest-worn
devices with similar performance, however there is still a lot
of directions to be explored. We next describe some scope for
improvement, and possible future directions.

Generalizability: In our current work we do not focus on
developing a generalized stress detection model. Rather, we
focus on comparing the difference in performance of different
sensing devices in capturing an individual’s heart rate and

6https://github.com/Z3Prover/z3. Accessed: 24-Nov-2021.

detecting physiological stress. Our current results demonstrates
that devices worn on the wrist can also be used to detect
stress. Although prior work with other sensors worn on the
wrist has demonstrated similar possibilities, however we show
that a low-cost commercial off-the-shelf device can perform
reasonably too. In future, we aim to collect a larger dataset to
ensure the generalizability of our models, as well as confirm
the findings that we have presented in this paper. To do that,
we will focus on collecting more data not just in laboratory
setting, but also in free-living environments.

On-device Computation and Interventions: Today’s stress
detection models collect data from wearable devices or in-
frastructure devices to detect whether a person is stressed.
Most of these stress detection systems work in an offline
mode, i.e., they collect data in real time, but process the data
offline, usually on a more computationally capable device.
However, detecting whether an individual was stressed in
future prevents providing necessary interventions during the
moment when one is experiencing the physiological stress.
Thus, needed are approaches to detect stress in real-time. Real-
time detection will allow researchers to introduce just-in-time
adaptive interventions (JITAIs) whenever adequate stressful
moments are observed.

Recent advances in machine learning, including growing
interest in machine learning for tiny embedded devices is
opening up the possibility of detecting stress in real-time [21].
Indeed, techniques such as sparsification and quantization
allow deploying deep learning models onto the resource con-
strained devices [22]. Researchers have shown the possibility
of deploying deep learning models for sensor streams [23].
In future, we will modify our existing approach to run the
stress detection algorithm on resource constrained devices and
detect stress in real-time. One challenge with detecting stress
in real-time is that motion artifacts affect the stress detection
performance. We will augment existing algorithms with IMU
sensor data to negate the effect of motion in stress detection.

Energy Requirements: Currently, we utilize all data points
collected from heart rate monitors in detecting whether an
individual is undergoing stress. Collecting and transmitting
continuous data points have severe energy implications. Since
these devices are battery powered, continuous collection and
transmission of data reduce their battery life. Over the years,
researchers have identified techniques such as duty cycling,
or piggy-backing to reduce energy. However, currently it is
unknown whether duty cycling the heart rate data will affect
its performance. In future, we aim to explore approaches to
sub-sample the sensor readings obtained from the wearable
devices, and determine whether the sub-sampling affects the
performance of the stress detection system.

Need for Formal Verification: The outcome from the ML
models is often difficult to interpret due to the “black-box”
nature of such models. As a result, the widespread usage of
these models is challenging in the community. Therefore, to
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improve the explainability of the ML models, we introduced
the formal verification approach based on the rules obtained
from the Random Forest classifier. This not only provides
explainability of the model, but also provides higher confi-
dence while communicating an outcome to the participants.
We, in this paper, have provided an initial formal verification
requirement. We envision that the formal verification of the
ML-based rules will help improve the models too. We aim to
formally verify stress detection models in our future work.

VII. CONCLUSION

We, in this paper, compared the performance of three heart rate
monitors (Polar H10, Garmin HRM Dual , Garmin Vivosmart
4 Fitness Band) that use different technologies (ECG, PPG) for
detecting heart rate, and determined their ability to detect phys-
iological stress. We performed a lab-based controlled study
involving 7 participants, who encountered a fixed sequence of
stressors. We captured the heart rate and R-R interval data
from these participants. Our preliminary analysis reveals that
the RMSE of heart readings is 5.2, and 10.23 bpm for the
HRM Dual Pro, and the Garmin smartwatch respectively with
respect to the Polar H10 heart rate monitor. We further trained
a person-independent Random Forest-based machine learning
model for stress detection from extracted features. The model
attained a F1-score of 82%, 79%, and 76% for HRM Dual
Pro, Garmin smartwatch, and Polar H10 respectively for
stress detection. These findings are further formalized with
a symbolic execution engine based on the rules obtained
from the ML classifier, to improve the explainability of the
model and increase the confidence of the model outcome.
Our study shows the possibility of detecting stress using a
smartwatch. However, we have to make several improvements
before deploying models on smartwatches, which includes
providing an explanation about the performance of the model.
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