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Abstract—Emotion-aware video consumption services typically
deploy a machine learning model to infer the emotion automati-
cally and provide the service accordingly. The ground truth labels
to train such models are usually collected as emotion self-reports
from users in a continuous manner (using additional devices)
while they watch different videos. This process of continuous
annotation induces additional cognitive workload and degrades
the viewing experiences. To overcome these challenges, we pro-
pose a framework OCEAN (Opportunistic Continuous Emotion
Annotation) that collects emotion self-reports opportunistically.
The key idea of OCEAN is to identify the moments when the
physiological responses change significantly and use only those
moments as the self-report collection (or probing) moments. We
evaluate OCEAN using the CASE dataset (a publicly available
dataset capturing continuous emotion annotation for different
videos). Our preliminary results demonstrate that OCEAN re-
duces continuous annotation effort (median number of the probe
is four and an average reduction of 89% probes) and yet collects
ratings similar to continuous annotations.

Index Terms—Emotion self-report, Opportunistic annotation

I. INTRODUCTION

Recently, there has been a surge in the use of emotion-
aware video recommendation and consumption services [1]
that triggered various exciting applications, including im-
proved learning experience in MOOC platforms [2], quantify-
ing emotional reactions to advertisements [3], and enhancing
interaction quality with videos [4], etc. Such services typically
use machine learning (ML)-based models at the backend to
infer users’ emotions and adapt the content of the video
accordingly. A large amount of ground truth emotion labels are
required to pre-train such ML models; therefore, the typical
approach is to collect the ground truth data through human-
based annotations in the form of self-reports during the video
consumption. However, human-based emotion label annotation
has two fundamental limitations. First, frequent probing for
annotations disrupt the viewing experience of the users [5],
and second, because of such degraded viewing experience,
the labels can be noisy and erroneous. Therefore, practical
researches and service developments in this direction need
an efficient method for emotion annotations. Interestingly,
emotions are subjective; therefore, we cannot avoid human-
in-the-loop altogether for emotion annotations.

Currently, different annotation strategies are used to collect
emotion self-reports. The most widely adopted approach is
the post-interaction or post-stimuli one, where the participants
provide emotion self-reports based on a standard scale (e.g.,

Self-assessment Manikin (SAM) [6]) after watching the video.
However, these approaches fail to capture intra-video subtle
nuances present in the videos. For example, a video can embed
different emotions (e.g., happiness, anger, sadness), but in the
post-stimuli approach, capturing and time-aligning all the emo-
tions is challenging. To address these issues, researchers use
continuous emotion annotation strategies, where participants
provide emotion annotations using a mouse or joystick or an-
other similar device, as they watch the video [7]. For example,
in the CASE (Continuously Annotated Signals of Emotion)
dataset [8], participants continuously provided emotion anno-
tation (valence and arousal based on the Circumplex Model of
emotion [9]) using a joystick. Works such as FEELTRACE [7]
have also collected continuous emotion annotations using such
devices. For such continuous emotion annotation, the user
needs to focus on two jobs simultaneously – (i) watching the
video and (ii) annotating emotion labels using the joystick
or similar devices, thus introducing a significant amount of
cognitive workload. Indeed, such overheads not only affect the
viewing experience but also impact the emotion labels. This
paper explores whether an opportunistic annotation strategy
that collects self-reports only at the relevant moments (when
the emotional reactions change) can alleviate the need for
continuous annotation and mitigate the associated cognitive
overloads.

Two different factors guide the key idea of developing such
an opportunistic annotation strategy. First, human emotions
usually persist for a period once felt; this is known as the
persistent effect of emotion [10]. Second, in a video, the
emotional nature of content does not change very frequently
(e.g., in every continuous frame) [11]. Therefore, it may not
be essential to collect the annotations continuously. Rather an
annotation strategy that automatically decides the opportune
moment of emotion variation (based on the variation in the
physiological responses) and requests (or probes) user for self-
reports only at these points can reduce the cognitive workload
and improve the viewing experience. Accordingly, we, in
this paper, propose the OCEAN (Opportunistic Continuous
Emotion ANnotation) framework to opportunistically identify
the probing moments instead of continuous emotion annota-
tion. Using a change-point detection algorithm, the framework
observes the physiological signals from different modalities
and detects the probing moments based on the abrupt changes
in the signal values. To optimize the probing moments fur-
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ther, OCEAN clusters the change-point scores (using k-means
clustering) and selects points with significant changes in the
physiological signals. This approach not only helps to reduce
the annotation effort but also collects annotations at those
points when the emotion variation has occurred.

We evaluate OCEAN using the publicly available con-
tinuous emotion annotation dataset, CASE [8]. The dataset
consists of physiological responses and continuous emotion
ratings from 30 participants watching different videos. We
segment the physiological responses into small windows and
use these as input to the framework to identify if the current
window is suitable for self-report collection (or probing) based
on the changes in the signal values (from the previous win-
dow). We observed that for every video, the median number
of self-reports to be responded to by the users is less than (or
equal to) 4. On average, users need to respond to 89% fewer
probes in the framework. We also demonstrate that despite
fewer probes, the sampled annotations are very similar to the
continuous ones (closely follow the minimum, maximum, and
median obtained from the continuous scores), thus indicating
the possibility of reducing annotation overhead by probing
opportunistically without compromising on annotation quality.

II. DATASET

The CASE dataset [8] collects emotion annotations based
on the Circumplex model of emotion [9] in two dimensions
(valence, arousal) using a Joystick based Emotion Reading
Interface (JERI). At the same time, it tracks the body’s
physiological reactions in response to the video being shown.
The dataset captures physiological responses for different
emotional stimuli (amusement, boredom, relaxation, scary).
The participants viewed two videos in each of these emotion
categories and were asked to provide their emotional responses
continuously (in real-time, as they watch the videos) using a
Joystick-based interface. The participants moved the Joystick
on a 2D plane to record valence and arousal scores (on a scale
of 1 to 9) based on the position of the Joystick. The annotation
data were sampled at 20Hz. The videos were selected to ensure
that all the four quadrants of the emotion Circumplex model
were well represented. We show the details of these videos in
Table I. As the participants watched the videos, the following
physiological signals were continuously collected – Electrocar-
diograph (ECG), Blood Volume Pulse (BVP), Galvanic Skin
Response (GSR), Respiration (RSP), Skin Temperature (SKT),
and Electromyography (EMG). These physiological signals
were synchronized and were sampled at 1000Hz.

Video id Emotion Valence Arousal Duration
(in sec.)

1 amusing med/high med/high 185
2 amusing med/high med/high 173
3 boring low low 119
4 boring low low 160
5 relaxing med/high low 145
6 relaxing med/high low 147
7 scary low high 197
8 scary low high 144

TABLE I: Details of the videos present in the CASE dataset for
continuous emotion annotation collection.

Thirty volunteers (15F, 15M) aged between 22 and 37
years watched these videos and recorded their emotional
and physiological responses following a within-subject study
design. To avoid carry-over effects, the order of the videos in
a session were modified in a pseudo-random manner, such that
the resulting video sequences varied between participants. To
isolate the emotional response elicited by the different videos,
they were interleaved by a two-minute long blue screen. This
two-minute period also allowed the participants to rest in-
between annotating the videos.

III. OCEAN FRAMEWORK

In this section, we discuss the OCEAN framework as shown
in Fig. 1. The key idea of the proposed framework is to identify
the points where the physiological responses changed during
the video consumption and to probe users only at these points.
Accordingly, we divide the framework into following key
stages – (a) physiological response segmentation, (b) probing
moment detection (based on change score), and (c) probing
moment optimization. Next, we discuss each of the steps.

Fig. 1: OCEAN Framework for identifying opportune probing mo-
ments based on physiological response variation

A. Physiological Signal Segmentation

In this stage, we segment the physiological responses into
fixed size windows. Although the dataset contains physiologi-
cal responses from different signals (BVP, ECG, EMG, GSR,
respiration, and skin temperature), we did not consider ECG
signal in this analysis as ECG signal is relatively noisy [12].
For every participant and video combination, we segment the
remaining physiological responses into fixed size windows.
We segment the physiological signals into 5-seconds windows
(derived empirically) and use it as input to the next module.

B. Probing Moment Detection

We apply the change point detection algorithm [13] on the
windows to detect the opportune probing moments. These
algorithms compute a score (known as change point score)
to identify any abrupt changes in the time-series values (in
this case physiological responses) of two consecutive data
segments (or windows). As a result, the variation in the
physiological responses manifested by the emotional changes
will be reflected by a high score.

The probing moment detection steps are as follows. First,
we compute the change point scores for every two consecutive
windows of signal values captured from a video using the RuL-
SIF algorithm [14]. Second, we apply an outlier elimination
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(a) Video-wise probe (b) User-wise probe (c) User-wise probe reduction

Fig. 2: Number of probes using OCEAN framework - (a) video-wise probes, (b) user-wise probes, (c) user-wise probe reduction using
OCEAN with respect to continuous self-report collection.

strategy on the set of change point scores. Specifically, we
eliminate outliers (change point score) at the lower extreme
(lesser than 3*standard deviation (σ) than mean (µ)) as they
indicate minimal change (or no change) in the physiological
signal values and thus are not ideal for probing. However, the
outliers at the higher end (greater than µ+3 ∗σ) are retained
separately as these points indicate very high change (and
therefore suitable for collecting emotion self-reports). Third,
all the remaining points (change point scores) are grouped
using the k-means clustering algorithm [15]. The value of
k is set to 2 so that the scores indicating a change are in
one cluster, and no changes are grouped into another cluster.
Intuitively, the change point scores are higher for the points
(between two consecutive windows) where the physiological
signals have actually changed. Therefore, we pick the cluster
whose centroid has a higher value as the cluster of interest for
probing. The scores in this cluster are the set of candidates for
probing users for the self-report. These steps are performed for
every user and every video, as individual responses may vary
based on the content of different videos.

C. Probing Moment Optimization

We aim to optimize the number of probing moments be-
cause probing a user in all candidate moments may lead to
interruption. To achieve this, we apply the following filtering
strategy. First, from the cluster of higher centroid, we select
only those points having a score higher than the centroid (this
reduces the number of probing moments). Next, We combine
these points with the retained higher-end outliers (as discussed
in Section III-B) to obtain the final set of change points, where
we can probe the user for self-report collection.

IV. EVALUATION

This section evaluates OCEAN in terms of annotation
effort reduction, quality of sampled annotation, and ability in
capturing the emotion response variations for timely probing.

A. Annotation Effort Reduction

We evaluate the efficiency of reducing continuous anno-
tations using the OCEAN framework. To validate this, we
identify the number of probes issued for each of the videos
in Fig. 2a. We observe that we need to probe four times on

average for each video. Similarly, we check the number of
probes for every user in Fig. 2b. In this case, we observe that
for most of the users (≈ 93%), the median number of probes
that OCEAN requires is four across all videos. We also find
the reduction in probing rate using OCEAN. To identify this,
for every user, we compute the total number of probes (for
all videos) that would have been triggered if the annotations
were collected at every five seconds (as OCEAN also employs
a five seconds window) interval – nact. Similarly, we compute
the total probes issued for the same user using the OCEAN
framework for all the videos – nocean. Thereafter, the probing
reduction is computed as (nact−nocean)×100

nact
. We present the

reduction in probing rate for all the users in Fig. 2c. For each
user, we obtain at least 85% reduction in probing rate and, on
average, a reduction of 89% using OCEAN. These findings
demonstrate that continuous annotations can be avoided, and
the self-reports can be collected opportunistically by probing
users a few times only. We next discuss whether this reduction
in probing rate impacts the annotation quality.

B. Emotion Annotation Quality

To compare the quality of sampled annotation with continu-
ous annotations, we compare several statistical measures (max-
imum, minimum, and median) of sampled values (valence
and arousal) and continuous values (valence and arousal).
We present these statistical measures of valence and arousal
scores for every video based on sampled annotations and
continuous annotations in Table II. We observe that for all
the videos, the statistical measures for both sampled and
continuous annotations are almost identical (except video 6
and 8 maximum valence values). These findings highlight
that the sampled annotations are similar to the continuously
collected emotion annotations and the framework does not
influence the quality of opportunistically collected labels for
majority of the cases.

C. Detecting Emotion Response Changes

To ensure that the sampled annotations (for valence and
arousal) follow the continuous ratings provided by the users,
OCEAN should probe when user’s emotion has actually
changed. To verify this pattern, we qualitatively compared the
continuous annotations and sampled annotations (the ratings
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Valence ArousalVideo id Min (Act.) Min (Sam.) Max (Act.) Max (Sam.) Med (Act.) Med (Sam.) Min (Act.) Min (Sam.) Max (Act.) Max (Sam.) Med (Act.) Med (Sam.)
1 1.763 1.883 9.5 9.5 6.266 6.284 3.164 3.552 9.013 9.013 5.248 5.624
2 3.058 3.514 9.5 9.5 6.169 6.562 1.71 2.936 8.414 8.396 5.008 5.101
3 2.42 2.967 7.39 7.39 5 5 0.509 0.509 7.005 6.375 3.772 4.844
4 2.686 3.145 7.943 7.572 5.009 5.05 0.5 1.402 6.477 6.477 3.836 4.065
5 1.163 1.8 9.5 9.5 6.052 5.845 0.5 0.5 6.291 5.937 4.115 4.337
6 2.717 2.981 9.206 7.705 5.397 5.702 2.905 2.912 6.83 6.609 5 5
7 0.5 0.5 7.813 7.513 2.887 3.2 1.023 1.023 9.5 9.5 7.200 7.711
8 0.5 0.5 8.919 6.871 4.613 3.198 3.018 4.287 9.5 9.5 6.45 7.417

TABLE II: Comparison of valence and arousal scores for all the videos based on continuous annotation (denoted as Act.) and the sample
annotation (denoted by Sam.) using OCEAN framework. Min., Max., and Med. denote minimum, maximum, and median values respectively.
For all the videos, all these values (min, max, and med) are similar for continuous and sampled annotation for valence and arousal.

(a) Continuous vs probed valence (b) Continuous vs probed arousal

Fig. 3: Comparing continuous and probed annotation for one rep-
resentative user (user 4) and one video (video 1) - (a) valence
comparison, (b) arousal comparison.

as collected based on the probing moments) for every user and
every video combination. It reveals that for most cases, probed
annotation moments closely follow the continuous annotation
(see Fig. 3 for one representative user’s valence and arousal
for a video). However, there are a few users (e.g., user 14,
30), for whom this pattern is not very identical. We envision
that individual physiological response variation could have
attributed to this, something we plan to investigate in future.

V. CONCLUSION AND FUTURE WORK

This paper presents OCEAN, a framework for opportunis-
tically collecting emotion self-reports for videos rather than
continuous annotation. OCEAN detects significant variations
in the physiological signals (as the participants watch videos)
using a change-point detection algorithm and identifies a set
of relevant self-report collection moments using the k-means
algorithm. The preliminary findings over the publicly available
CASE dataset highlight that OCEAN reduces the continuous
annotation overhead, yet records annotations similar to the
continuous ratings. However, while developing OCEAN, we
came across some potential opportunities and challenges that
can be explored in the future versions of this work.

Latency of Probing: One of the critical factors in the
performance of OCEAN is the window size used for change-
point detection. For an online system, this will indicate the
minimum window for which the system needs to collect the
sensing data to decide whether there is any change. Albeit, it
is implausible that a subject’s emotional state changes across
such a small window. A thorough investigation needs to be
done to quantify the errors introduced in the system.

Storage Reduction: One of the essential advantages that
OCEAN provides, in addition to the reduction of probes, is

the overall reduction of storage space required to log the
continuous sensed data. Notably, OCEAN achieves this by
precisely observing the changes in the physiological sensors,
which potentially indicate the opportune moments where the
emotional state may have changed.
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