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ABSTRACT
Keystroke or typing dynamics represent two key facets - rhythm
corresponds to spectral-domain characteristics and timing corre-
sponds to time-domain behavior , which are created when a person
types. The presence of inherent time-domain and frequency-domain
characteristics in smartphone keyboard interactions motivate us
to perform a comparative analysis of time-domain and frequency-
domain features for emotion detection. We design, and develop
an Android-based data collection application, which collects key-
board interaction logs and emotion self-reports (happy, sad, stressed,
relaxed) from 18 subjects in a 3-week in-the-wild study. For the
time-domain analysis, we extract a set of time-domain features and
construct Random Forest-based personalized model; whereas for
the spectral-domain analysis, first transform the interaction details
into frequency-domain using DFT (Discrete Fourier Transform)
and then extract a set of spectral-domain features to construct a
personalized model for emotion detection. The empirical analysis
from the study reveals that the time-domain models return supe-
rior classification performance (average AUCROC 72%) than the
frequency-domain models (average 67%). It also signifies the im-
portance of several time-domain and frequency-domain features as
a strong discriminator of emotion states.
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1 INTRODUCTION
Over the last decade, smartphone touchscreens became one of the
most widely used input devices for user interaction [8, 9]. Recently,
a significant volume of literature have explored the potential of
the touch and keyboard interactions with the desktop keyboard or
smartphone surfaces to infer user emotion, stress, and related affec-
tive states [1, 5, 7]. Those attempts mostly rely on the development
of supervised machine learning (or deep learning) models, where
suitable features are judiciously chosen to capture the signature of
the different affect states. Hence, rigorous feature engineering is
an integral component for the development of these models.

In this paper, we concentrate on the problem of emotion detec-
tion from the smartphone typing activities. However, exploration of
the data collected from the typing modality opens up two avenues
for the feature engineering (a) time domain features: which are
simple to extract and have easy physical interpretation, (b) spectral
or frequency domain features: which are obtained by converting the
time based data into the frequency domain using the transforma-
tions. We collect typing interaction details in terms of elapsed time
between two consecutive key presses (known as Inter-tap duration
or ITD) from every typing session, defined as the time spent by the
user at-a-stretch on a single application. We also collect the user’s
emotion self-report (from a set of four discrete labels - happy, sad,
stressed, relaxed) corresponding to every session, by probing her
at the end of the typing session. For the time-domain analysis, we
extract several features from the set of ITDs and develop a machine
learning model for emotion inference. On the contrary, for the
frequency-domain analysis, we transform the session-wise ITDs
to the spectral domain using Discrete Fourier Transform (DFT)
and extract a set of features from the transformed data to train a
machine learning model for emotion inference. Additionally, in or-
der to examine the capacity of both temporal and spectral features
together, we construct a hybrid model by aggregating the features
from both the domains and compare its emotion classification per-
formance (section 3). The experimental results demonstrate that
using time-domain representations, user emotions can be detected
more accurately with an average accuracy (AUCROC) of 72%, while
in the frequency-domain the average accuracy (AUCROC) is 67%.

The major contribution of this paper is to highlight the poten-
tial of the typing based features for emotion classification. In this
direction, we propose the time based and frequency based features
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and developed simple ML based models (TDF and FDF) for emotion
classification, which demonstrates the plausibility of the typing
activities as emotion indicator.

2 DATA COLLECTION
In this section, first we describe the experiment apparatus, devel-
oped to collect the data. Next, we explain the data preprocessing
steps and provide a brief summary of the collected data.

2.1 Experiment Apparatus
The experiment apparatus is an Android application, which consists
of the following two key components - (a) app keyboard (Figure 1a),
(b) emotion self-report collection UI (Figure 1b). We allow subjects
to select one of the following four emotions (happy, sad, stressed,
relaxed) as radio buttons. We choose these four emotions from four
different quadrants of the Circumplex model (Figure 1c) of emotion
[10], which allows user convenience in self reporting, since these
four emotion labels are pretty discriminative & largely represent
the frequently experienced emotion states [4]. The user also has the
option to skip self-reporting by selecting the No Response option,
which is set as default.

(a) App keyboard (b) Emotion self-report
UI

(c) Circumplex model
[10]

2.2 Preprocessing & Data Summary
We recruited 18 participants (16 males, 2 females) aged between
24 to 33 years from our university. We installed the app on their
smartphones and collected data for three weeks. We perform the
data cleansing operations[5] on the collected data in the following
three steps. (a) First, we remove all the sessions that are tagged with
No Response, as they do not reveal any emotion (2.5% sessions). (b)
Next, all the short sessions (with less than 80 typing interactions)
are also eliminated, as lack of sufficient typing interactions may
not be suitable for emotion prediction [5, 6] (22% sessions). (c) If
the time interval between the end of a session and the collected
emotion label is high, the staled label may not reflect accurately
the emotion experienced during the session. Hence, we filter out
all sessions for which the interval between the typing session and
the emotion label collection is more than 1.5 hours (15% sessions).

Finally, after data preprocessing, we obtain a total of 504890 typ-
ing interactions spanning across 2100 typing sessions. On average
we collect ≈ 90 sessions from every subject. We observe that all
subjects have reported at least 3 emotions and all but 4 subjects
(U10, U13, U14, U15) have reported all the four emotion labels. It is
also observed that for most of the subjects relaxed emotion is most
frequently reported, followed by happy, stressed and sad, which
causes imbalance in the distribution of emotions.

3 EMOTION PREDICTION MODELS:
TEMPORAL VS FREQUENCY

In this paper, we consider that the typing behavior of the subject
carries the signature of her emotion states. We measure typing
speed as Inter-Tap Duration (ITD), which is the elapsed time be-
tween two subsequent typing event. We define typing session as the
time period, when subject stays onto a single application without
changing the same. For example, when a subject usesWhatsApp un-
interrupted without switching to other application from time 𝑡1 to
𝑡2, then we define elapsed time between 𝑡1 and 𝑡2 as a typing session.
Each small bar within this session (see Figure. 2) depicts a typing
event and we calculate the Inter-Tap Duration (ITD) as the interval
between two consecutive typing events. We represent a session 𝑡

of dimension 𝑛 as a sequence of ITDs 𝑆𝑡𝑛{𝑣𝑖 |𝑖 ∈ {1, . . . , 𝑛}}, where
each element 𝑣𝑖 in this vector refers the time interval between two
consecutive typing events in a session.

3.1 Feature construction
3.1.1 Time domain feature. First, we compute the time domain
features from the typing characteristics, obtained from the session
𝑡 . We concentrate on the most straightforward features, which
can be directly computed from the ITD sequence 𝑆𝑡𝑛 of a session
𝑡 . For instance, we compute simple statistic of 𝑆𝑡𝑛 , such as mean,
first quartile, second quartile, and third quartile from the ITDs in
a session 𝑡 . For each session of a subject, the mean session ITD is
calculated as follows

𝑀𝑆𝐼𝑠𝑒𝑠𝑠𝑖𝑜𝑛 =

∑𝑛
𝑖=1 𝑣𝑖
𝑛

,

where n is length of session and 𝑣𝑖 is ith ITD value
In order to compute the first, second, and third quartile of a session
𝑡 , we first derive the sorted sequence of ITD values 𝑆𝑡 ′𝑛 = {𝑣𝑖 |𝑖 ∈
{1, . . . , 𝑛}} of session 𝑡 . We compute the second quartile of 𝑡 as the
median of the complete sorted sequence 𝑆𝑡 ′𝑛 , whereas the first and
third quartile are the median of lower 50% and upper 50% of 𝑆𝑡 ′𝑛
respectively. We extract a set of features from every session of a
subject and use them to train the model.

3.1.2 Frequency domain feature. First, we apply Discrete Fourier
Transform (DFT) on the ITDs present in a session 𝑡 to obtain the
equivalent frequency-domain representation. Each element in 𝑆𝑡𝑛 ,
say 𝑣𝑖 represents the Inter Tap Duration (ITD), which is a discrete el-
ement showing the time interval between two typing events. After
transforming in the frequency domain, we represent this ITD se-
quence of session 𝑆𝑡𝑛 (of dimension 𝑛) as a combination of 𝑛 number
of periodic signals with different amplitudes and frequencies. Hence,
in the frequency domain, the obtained signals can be represented as
a collection of complex numbers {𝑥𝑘 𝑗

+ 𝑖𝑦𝑘 𝑗
,∀𝑗 ∈ {1, . . . , 𝑛}}. Here

each real component 𝑥𝑘 𝑗
represents the amplitude of the respective

signal with frequency 𝑘 𝑗 . Since we focus on the amplitude only, we
discard the imaginary part and deal with only the real part of the
coefficients [3]. Finally, we compute the resultant amplitude 𝑥𝑘 of
the session 𝑆𝑡𝑛 for the signal with frequency 𝑘 Hz as follows,

𝑥𝑘 =

𝑛−1∑︁
𝑗=0

𝑣 𝑗 × 𝑐𝑜𝑠 (2𝜋𝑘 ∗ 𝑗/𝑛) (1)
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For a session 𝑆𝑡𝑛 of dimension𝑛, we repeat this procedure for all the𝑛
signals to generate the amplitude vector𝐴𝑛= {𝑥𝑘 𝑗

,∀𝑗 ∈ {1, . . . , 𝑛}}.
We consider 𝐴𝑡

𝑛 as a frequency domain representation of session
𝑆𝑡𝑛 , of dimension 𝑛. Note that depending on the session dimension,
the cardinality of the amplitude vector may vary across various
sessions.

Figure 2: Schematic diagram of transforming set of ITD(s) to fre-
quency domain. The set of ITD(s) obtained from different sessions
(e.g. S1, S2, S3) are transformed using Discrete Fourier Transform
(DFT) to obtain the frequency domain representation. From this set
of coefficient-pairs, we filter out the imaginary ones and consider
only the real ones for future processing.

3.2 Model implementation
We consider the top-3 peak amplitudes, extracted from the ampli-
tude vector 𝐴𝑡

𝑛 of session 𝑡 , as frequency-domain feature. Lever-
aging the time domain features and frequency domain features,
we construct random forest-based personalized emotion prediction
models, Time domain feature based model (TDF), and Frequency
domain feature based model (FDF), respectively. There is no specific
value chosen for the tree’s maximum depth, so it is unlimited. For
each emotion label (say, happy), we exclusively train a classifier
model based on that label (say, happy) and rest of the labels (sad,
relaxed, stressed). For each subject, each model is build separately
to capture the personality trait.

Apart from individually exploring the capacity of the time do-
main and the frequency domain features, finally, we investigate the
discriminating power of the time-domain and frequency-domain
combined features. We develop a Hybrid model (HM) leveraging
the features from both the time and frequency-domain.

4 EVALUATION
In this section, we conduct a comparative study of the emotion
prediction models, developed based on the temporal features (TDF),
spectral features (FDF) and the combined features (HM) respec-
tively.

4.1 Experiment setup
We implement a personalized machine learning model for every
user to classify the four emotion states. We implement stratified
train-test split for every user to evaluate the performance of the de-
veloped models. We split the dataset in 80 : 20 ratio where 80% data

is used to train the models and 20% is used for testing purpose. Then
we apply Synthetic Minority Oversampling Technique (SMOTE)[2]
only on the training data to inflate & balance the training dataset,
whereas we test the models on the original data. The upsampling
is done in such a way that the number of samples in all class are
the same as the number of samples in the major class.
We compute unweighted AUCROC (Area under the Receiver Op-
erating Characteristic curve) as the performance metrics, which
compare the model predicted emotion, with the ground truth emo-
tion labels. In order to compare the subject-wise accuracy, we im-
plement the average of unweighted AUCROC (𝑎𝑢𝑐𝑎𝑣𝑔) from four
different emotion states.

(a) Model-wise mean AUCROC. (b) Emotion-wise mean AUCROC.

Figure 3: Comparison of model-wise and emotion-wise performance.
The TDF model performs better than the FDF model. Combining
time-domain, and frequency-domain features performs similarly as
the TDF model. Error bar indicates standard deviation.

4.2 Subject wise performance
In Figure 4 we compare the subject wise accuracy of the TDF, FDF
and HM models. The TDF model provides an average 𝑎𝑢𝑐𝑎𝑣𝑔 of 72%
(std. dev 17%), while the FDF model obtains an average 𝑎𝑢𝑐𝑎𝑣𝑔 of
67% (std. dev 16%). However, when both the temporal and spectral
features are combined in the HM model, it performs similarly as
the TDF model, as it achieves an average accuracy 𝑎𝑢𝑐𝑎𝑣𝑔 of 73% (
as shown in Figure 3a). In TDF, we observe that 50% of the subjects
have an 𝑎𝑢𝑐𝑎𝑣𝑔 of at least 70%, whereas in FDF and HM achieves
an 𝑎𝑢𝑐𝑎𝑣𝑔 of at least 60% and 70%, respectively. In case of HM, it
is observed that around 77% of the subjects achieve an accuracy
(𝑎𝑢𝑐𝑎𝑣𝑔) of at least 60%, whereas it achieves 66% of the subjects in
TDF. We achieve a 93%, 75%, and 93% accuracy (𝑎𝑢𝑐𝑎𝑣𝑔) in TDF,
FDF, and HM model, respectively for subject 7 (U7). However, it is
observed that 100% accuracy(𝑎𝑢𝑐𝑎𝑣𝑔) is obtained for subject 8 (U8),
the accuracy is mean of accuracy for two emotion classes (happy
and relaxed) as no sample from stressed and sad was present in the
test set. Furthermore, it is impossible to apply SMOTE on the data
of U8 due to the presence of very few data sample in some classes.
We obtain poor classification performance for a few subjects (like
10, 11, 13, 14), primarily due to the skewed distribution of emotions
in their dataset.

4.3 Emotion wise performance
We report emotion-wise accuracy for each model in Figure 3b. In all
the models, the emotion state happy is classified with the highest
AUCROC of 80%, 66%, and 83% in the TDF, FDF, and HM model,
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Figure 4: Subject-wise AUCROC for all models.

respectively. Although emotional state sad is the less frequent emo-
tion among users, it results in the high AUCROC score due to its
distinctive pattern than other emotions. On the other hand, emotion
stressed is identified with the lowest accuracy of 57%, 64%, and 63%
in the TDF, FDF, and HM model, respectively.

In FDF model, the stressed and relaxed states are identified with
poor AUCROC scores indicating that frequency-domain features
are not suitable to identify these two states. If we closely observe
the data distribution of subjects, the highest number of samples
is in emotion relaxed, followed by happy, stressed, and sad. But
the number of the sample have no impact on the accuracy of the
states. Instead, we observe that the emotional state relaxed is hard
to distinguish as indicated by the accuracy.

4.4 Feature Importance: Temporal vs Spectral
We rely on the HM model to compute the information gain (IG) of
the features by implementing InfoGainAttributeEval method from
Weka [11]. In Table 1, we rank all the time-domain and frequency-
domain features based on the average information gain. It is ob-
served that second quartile (Q2) tops the list followed by the fea-
tures first (Q1) and third (Q3) quartile. We notice all together top-3
amplitude have a moderate impact on models’ performance. This
suggests that easy-to-compute time-domain features are strong dis-
criminator of emotion states than the frequency-domain features.

Features Rank Information Gain (IG)
Second quartile (Q2) 1 0.278
First quartile (Q1) 2 0.242
Third quartile (Q3) 3 0.189
Second Peak Amplitude (𝑃𝐴2) 4 0.166
First Peak Amplitude (𝑃𝐴1) 5 0.151
Third Peak Amplitude (𝑃𝐴3) 6 0.148
MSI 7 0.106

Table 1: Ranking time-domain and frequency-domain features based
on information gain. All top-3 features are from the time-domain,
suggesting time-domain features are better discriminator of emo-
tions than the frequency-domain features.

5 CONCLUSION
In this paper, we perform a comparative analysis between the time-
domain and frequency-domain representation of smartphone typ-
ing interaction data for multi-state emotion detection. We design
and develop an Android application (consisting of a keyboard and
self-report collection facility), which is used to collect typing inter-
action details and emotion self-reports (happy, sad, stressed, relaxed)
from 18 subjects in a 3-week in-the-wild study. We group the typing
data in sessions, consisting of Inter-tap duration (ITDs) and labeled
by the emotion self-reports. To perform the time-domain analysis,
we extract a set of features from these ITDs and train a person-
alized Random Forest-based model for emotion classification. On
the contrary, to perform the frequency-domain analysis, we trans-
form the ITDs using DFT and extract a set of amplitude related
features to train another personalized model for emotion detec-
tion. We obtain superior performance for the time-domain models
and obtain an average AUCROC of 72%. For both time-domain
and frequency-domain representations, several easy-to-compute
features like (first, second, and third) quartiles of ITDs and (first,
second, and third) peak amplitude of transformed ITDs are found
to be strong discriminator of different emotions.
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