
(POSTER) Insights from Executing TinyML
Models on Smartphones and Microcontrollers

Harman M. Singh, Shrishailya Agashe, Shreyans Jain,

Surjya Ghosh, Aditya Challa, Sravan Danda, Sougata Sen
Dept. of Computer Science & Information Systems, BITS Pilani K K Birla Goa Campus, India

Abstract—In this paper, we empirically compare the
system-level performances of executing a machine learn-
ing task on a resource-constrained IoT device and com-
pare its performance to offloading the task to a more
capable device, a smartphone. Our results indicate that
although the resource-constrained device cannot run
complex machine learning models, they can provide
reasonable accuracy using similar models that can load
on their memory. For running simpler models on the
microcontroller, the best case accuracy for the machine
learning task was 94.32% (SD: 1.7%). Furthermore, local
computation resulted in almost 50% lesser current draw
as compared to the offloading. These observations make
a case for adopting an adaptive approach to ensure that
applications meet the energy-accuracy-latency balance.

I. INTRODUCTION

We, in this paper, perform a trade-off analysis be-
tween running machine learning tasks in situ, on a
microcontroller (a commonly used IoT edge device)
versus offloading the task to a co-located, resource-
rich device. Specifically, we use deep learning-based
object detection as the specific use case for comparing
the performance of offloading the task to a connected
smartphone, as compared to performing the object de-
tection task on the microcontroller. We selected the
object detection task as it is extensively used in various
domains such as navigation, autonomous driving, and
video surveillance [1]. We use TensorFlow to create the
deep learning models, and the TensorFlow Lite (TFLite)
framework1 to convert the TF models. We use multiple
variations of the mobile device-friendly MobileNets ar-
chitecture as the deep learning models’ architecture [2],
[3]. Currently, only some microcontrollers support run-
ning TFLite models, one among which is the ESP32 mi-
crocontroller family.2 We use an ESP32 microcontroller-

1https://www.tensorflow.org/lite, Accessed: 02/20/2023
2www.tensorflow.org/lite/microcontrollers, Accessed: 02/20/2023

based edge device to either perform the in situ task or
to offload the task to a nearby smartphone.

Overall Goals: Thus, this paper aims to study the
difference in performance (as a measure of accuracy,
latency, and energy tradeoffs) when computation is per-
formed on a low-powered microcontroller, as compared
to performing the same task on a smartphone.

II. EXPERIMENTAL SETTING

Devices chosen and connection strategy: We use
an ESP-EYE development board to run various machine
learning tasks [4]. The ESP-EYE development board
consists of an ESP32 microcontroller, 8 MiB PSRAM, 4
MiB flash memory, 2 Megapixel camera, and Bluetooth
Low Energy (BLE) and Wi-Fi modules. The ESP-EYE
in the experiment was connected to an Android-based
Samsung Galaxy A31 smartphone via Wi-Fi. In our
setup, the ESP-EYE acted as the access point; the
smartphone connected to this access point to ensure
the connection was not routed via an external router.

Deep Learning approach: Deep convolution networks
are known to extract features from images that can
be used for object detection [2], [5]. The MobileNet
architecture has been designed for low-resource en-
vironments, making it our preferred choice. Transfer
learning is a commonly employed approach to reduce
a network’s training time and large data requirements.
Many pre-trained MobileNets models are available on-
line [6], which makes transfer learning a suitable train-
ing method. We applied transfer learning on both Mo-
bileNets V1 [2] and MobileNet V2 [3] architectures.

All models were retrained on the same dataset con-
taining five object classes: bicycle, car, chair, person,
and table. We used 200 images for retraining each class,
along with data augmentation, and trained six different
versions of MobileNets –three based on MobileNets

89

2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-
IoT)

2325-2944/23/$31.00 ©2023 IEEE
DOI 10.1109/DCOSS-IoT58021.2023.00026

20
23

 1
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

in
 S

m
ar

t S
ys

te
m

s a
nd

 th
e

In
te

rn
et

 o
f T

hi
ng

s (
DC

O
SS

-Io
T)

 |
 9

79
-8

-3
50

3-
46

49
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DC
O

SS
-IO

T5
80

21
.2

02
3.

00
02

6

Authorized licensed use limited to: Birla Institute of Technology and Science. Downloaded on October 27,2023 at 13:42:44 UTC from IEEE Xplore. Restrictions apply.

V1 (α ∈ {0.1, 0.2, 0.25}), and three based on MobileNets
V2 (α ∈ {0.05, 0.1, 0.35}). α is the width multiplier. For
each version, we developed one quantized, and one
unquantized model. Each model had an input shape of
(96, 96, 3). These values signify the width, height, and
the number of colors of the image, respectively.

The ESP and Smartphone Applications: We devel-
oped two microcontroller-based applications and one
smartphone-based application. The microcontroller-
based applications were developed using the ESP-
IDF (Espressif IoT Development Framework). The first
application allowed capturing images using the ESP-
EYE and locally running the inference on the microcon-
troller. This application supported both quantized (8-bit
int) and unquantized (32-bit float) models. The second
ESP-based application enabled capturing images and
offloading the inference task onto the smartphone via
Wi-Fi. We experimented with various image-capturing
rates on the ESP. The smartphone application ob-
tained images from the second ESP application and
passed them through a model. We experimented with
all six MobileNets models, running each image through
each model, one at a time. Each model had an input
shape of 96×96×3, so we reshaped each image into a
96× 96× 3 image and then converted it to a tensor for
the inference task. Once the inference was performed,
the image was displayed on the screen, along with the
probability of occurrence of each class.

III. EXPERIMENTAL METHODOLOGY

We used the setup described in Section II to evalu-
ate the two settings – running the task locally on the
microcontroller versus offloading it to the smartphone.

Accuracy: We performed the accuracy evaluation using
an offline dataset of 1250 images (250 images each of
bicycle, car, chair, person, and table classes) that were
taken from multiple Kaggle datasets. MobileNets models
use the parameter α to control the width of the network;
we experimented with various α values to determine the
object detection accuracy. For each model, we created
both a quantized model (8-bit int values) for weights
and biases and an unquantized model (32-bit floating
point numbers) for weights and biases. The accuracy
was estimated by performing 5-fold cross-validation.

Latency: The ESP device collected images using the
onboard camera module for 30 seconds. We calculated
the latency numbers for capturing the image, processing

the image (either locally in application 1 or offloaded
by sending it over Wi-Fi and then processing it in
application 2) and producing the final output. We ran
all the models using either app 1 (inference on the
microcontroller) or app 2 (inference on a smartphone).

Energy: We computed energy from the microcontroller’s
current (or power) draw. We used the Monsoon High
Voltage Power monitor device to compute the draw [7].
We performed various combinations of keeping the
MCU, the camera, or RF modules either ON or OFF,
choosing between a quantized and unquantized model,
and choosing between performing the inferences locally,
on the ESP device, or offloading the computation to the
smartphone. To measure the power consumption when
only the MCU was ON, we ran an empty loop() function.
Subsequently, for turning components ON, we gradually
included additional code into this subroutine.

IV. RESULTS

A. Accuracy

Overall, for all models, we observed that the per-
formance improves as the value of α increases. For
example, in MobileNetv1’s quantized models, the ac-
curacy increased from 83.4% for α = 0.1 to 89.9%
for α = 0.2. Regarding quantization, we observed that
the performance of all quantized models was slightly
lower than the unquantized models in all cases. Fig. 1
presents the accuracy of various models.

B. Latency

Overall, it takes 84.5 ms for the camera to capture and
store an image in the RAM. The image capturing and
inference required 415 ms for the unquantized model,
whereas it required 135 ms for the quantized model
(using α = 0.1). We also observed that quantized
models could complete inference at least 2× faster
than unquantized models. For offloading the models, the
inferencing time was comparable to on-device compu-
tation in the case of smaller models. However, the gap
widened for larger models (higher values of α). If we
consider the network latency, running the task on the
smartphone is 2-3× faster than running the unquantized
model on the ESP. Fig. 2 presents the variation of
latency for different models.

C. Energy

We collected the current consumption details under
various scenarios. Major results are presented in Table I.

90

Authorized licensed use limited to: Birla Institute of Technology and Science. Downloaded on October 27,2023 at 13:42:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Object detection of quan-
tized and unquantized models
trained with different α.

Fig. 2: Latency in prediction for
various values of α, using both
MobileNets V1 and V2.

Components ON Setting Curr. (mA)
MCU none 44.84

MCU, cam. frame: 0.2 fps 78.04
MCU, cam. frame rate: 1 fps 79.15

MCU, cam., inf. 1fps, unquant. 87.18
MCU, cam., inf. 1fps, quant. 80.51

MCU, WiFi tx rate: 1 kbps 139.45
MCU, WiFi tx rate: 5 kbps 139.69

MCU, cam., WiFi 1fps 176.31

TABLE I: Current draw during oper-
ation of specific ESP components at
various operation specifications

MCU ON: We observed that the average power draw
when the MCU was ON was 340.1 mW, and the average
current draw was 68.0 mA. The average current draw
dropped to 44.8 mA (power draw of 224.2 mW) when a
1 ms sleep was introduced in the loop() function.

MCU + Camera: The average current (and power) draw
for image captured at 2 fps, 1 fps, 0.66 fps, and 0.2 fps
was 80.7 mA (403.3 mW), 79.2 mA (395.7 mW), 79.0
mA (394.9 mW), and 78.0 mA (390.2 mW) respectively.
These readings show that reducing the frame rate does
not substantially reduce the energy draw.

Camera + on Device inference using unquantized
model: The average current (and power) draw for image
capture at 2 fps, 1 fps, 0.66 fps, and 0.2 fps was 97.8 mA
(489.0 mW), 87.2 mA (435.9 mW), 84.0 mA (420.2 mW),
and 79.4 mA (396.7 mW) respectively.

Camera + on Device inference using quantized
model: The average current (and power) draw for im-
ages captured at 2 fps, 1 fps, 0.66 fps, and 0.2 fps was
84.0 mA (419.9 mW), 80.5 mA (402.5 mW), 79.3 mA
(396.4 mW), and 78.2 mA (390.9 mW) respectively.
These readings indicate that at 2 fps, the current draw
of the quantized model was substantially lower than that
of the unquantized model.

MCU + Camera + WiFi: When the radio is ON and is
waiting for a client station to join, the current draw is
146.3 mA. When the client is continuously transmitting
1-KiB and 5-KiB of data every second, the current draw
is 139.5 mA, and 139.7 mA, respectively. Finally, when
images were sent to the connected smartphone via Wi-
Fi for inference purposes at 1 fps, the current draw
was 176.3 mA, approximately 2× more than running
inferences in situ.

V. CONCLUSION

This paper compares the performance of running
deep learning inferences on a microcontroller versus
offloading the inference to a nearby device. Overall, we
observed that offloading the inference to a nearby de-
vice is energy expensive (2×) while being slightly more
accurate. However, the smartphone could provide the
inference with low latency for larger models. Thus, there
is a trade-off between energy, latency, and accuracy.
We believe that an adaptive pipeline for object detection
tasks could help balance system performance.

VI. ACKNOWLEDGMENT

This research results from a research program
supported by BITS Pilani ACG GOA/ACG/2021-
2022/Nov/05 and a gift from the TensorFlow team to
develop educational resources. All findings and rec-
ommendations are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

[1] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu,
“A survey of deep learning-based object detection,” IEEE access,
vol. 7, pp. 128 837–128 868, 2019.

[2] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals linear bottlenecks,” in Conference
on Computer Vision & Pattern Recognition (CVPR), 2018.

[4] “ESP-EYE,” https://www.espressif.com/en/products/devkits/
esp-eye/overview, 2023, Accessed:02/13/2023.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[6] “Tensorflow hub,” https://tfhub.dev/s?module-type=
image-classification&network-architecture=mobilenet-v2, 2023,
accessed:01/21/2023.

[7] “High voltage power monitor,” https://www.msoon.com/
high-voltage-power-monitor, 2023, accessed:01/26/2023.

91

Authorized licensed use limited to: Birla Institute of Technology and Science. Downloaded on October 27,2023 at 13:42:44 UTC from IEEE Xplore. Restrictions apply.

