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Verbal Pedestrian Crossing Actions Using Camera and Physiological Sensors
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Pablo Cesarb,c , and Abdallah El Alib

aUniversity of Amsterdam, Amsterdam, Netherlands; bCentrum Wiskunde & Informatica, Amsterdam, Netherlands; cDelft University of
Technology, Delft, Netherlands

ABSTRACT
Capturing drivers’ affective responses given driving context and driver-pedestrian interactions
remains a challenge for designing in-vehicle, empathic interfaces. To address this, we conducted
two lab-based studies using camera and physiological sensors. Our first study collected partici-
pants’ (N¼ 21) emotion self-reports and physiological signals (including facial temperatures)
toward non-verbal, pedestrian crossing videos from the Joint Attention for Autonomous Driving
dataset. Our second study increased realism by employing a hybrid driving simulator setup to cap-
ture participants’ affective responses (N¼ 24) toward enacted, non-verbal pedestrian crossing
actions. Key findings showed: (a) non-positive actions in videos elicited higher arousal ratings,
whereas different in-video pedestrian crossing actions significantly influenced participants’ physio-
logical signals. (b) Non-verbal pedestrian interactions in the hybrid simulator setup significantly
influenced participants’ facial expressions, but not their physiological signals. We contribute to the
development of in-vehicle empathic interfaces that draw on behavioral and physiological sensing
to in-situ infer driver affective responses during non-verbal pedestrian interactions.
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1. Introduction

There is an increasing interest within the automotive indus-
try to develop empathic cars,1,2 which can infer driver emo-
tions (Koch et al., 2021). This is partly due to human
emotions arising during driving scenarios (particularly anger
or stress), which are known to adversely impact driving
behavior (Jeon, 2015). Therefore, identifying these emotions
during driving scenarios and conveying this information to
drivers such that emotions may be regulated in a timely
manner, can play a crucial role in improving road safety
(Jeon et al., 2011; Zepf et al., 2019, 2021). While environ-
mental (weather, roads) and situational (traffic) factors have
previously been considered for inferring drivers’ emotional
states (Braun et al., 2019; Habibovic et al., 2018; Jeon, 2016),
the non-verbal interaction between a driver and pedes-
trian(s) has received less attention. Considering that pedes-
trian non-verbal behavior is often a source of negative
driver emotion (Zepf et al., 2019), automatically capturing
drivers’ affective responses toward pedestrian non-verbal
actions can aid in designing empathic, in-vehicle interfaces,
thus leading to increased road safety.

Non-verbal pedestrian actions (e.g., a nod or eye contact)
toward drivers persist for a very brief period of time, and
therefore pose a significant challenge when capturing a

driver’s affective response induced by such pedestrian
actions (Gu�eguen et al., 2015; Mahadevan et al., 2018; Ren
et al., 2016). These affective responses may include voluntary
responses, such as vocal expressions, or head and body
movements, as well as involuntary responses, such as pupil
dilation, heart rate and skin conductance changes or facial
expressions. Moreover, several pedestrians performing differ-
ent actions may be present at the crossing at any given
point. Therefore, identifying the relevant pedestrian impact-
ing the driver’s affective state is also not a trivial task (Risto
et al., 2017). Finally, simulated pedestrians used in trad-
itional driving simulator experiments fail to elicit a realistic
driver-pedestrian interaction that is critical in influencing a
driver’s behavioral and affective state during driver-
pedestrian interaction (Golland et al., 2015; Vanutelli et al.,
2017).

Given these challenges, we ran two studies at Centrum
Wiskunde & Informatica (CWI) in The Netherlands with
increasing fidelity and realism. First, we conducted a video-
based study where participants watched videos of pedestrian
actions that ensured a single pedestrian action was being
performed at a given time. Following that, we ran a hybrid
simulator study with experimental confederates to enhance
realism. These confederates acting as pedestrians performed
positive and non-positive actions.
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In the first study, we asked (RQ1): how do people’s
affective (emotional) responses vary in response to different
non-verbal, pedestrian crossing actions shown through video
stimuli? To answer this, we conducted an in-lab study where
participants with driving experience (N¼ 21) watched
10 short videos of positive and non-positive driving scen-
arios (involving different pedestrian actions) from the pub-
licly available Joint Attention for Autonomous Driving
(JAAD) dataset (Ghosh et al., 2022; Rasouli et al., 2017a,
2017b). The positive and non-positive labels were adapted
from prior work that discovered that none of the JAAD vid-
eos were rated as very negative by the participants (Ghosh
et al., 2022). We collected participant behavioral and physio-
logical (heart rate, skin conductance and pupil diameter) sig-
nals throughout the entire duration of the study. Using
techniques from activity annotation, we segmented and
identified relevant participant signals induced by the stimuli
(videos). We found that participants reported higher valence
(pleasantness) upon observing positive pedestrian crossing
action videos. On the other hand, participants reported
higher arousal (excitement) upon watching non-positive
pedestrian crossing videos. Additionally, participants’
physiological signals were significantly influenced by the dif-
ferent (positive vs. non-positive) non-verbal, pedestrian
crossing actions. These signals also vary significantly for dif-
ferent levels of participants’ valence (positive vs. non-
positive) and arousal (high vs. non-high) scores. Finally,
participants facial temperatures also varied significantly for
different levels of participants’ valence (positive vs. non-
positive) and arousal (high vs. non-high) scores.

To increase realism and extend the work by Rao et al.
(2022), in our second study, we designed a hybrid driving
simulator. In the hybrid simulator setup, participants drove
a car in a driving simulator and stopped when approaching
a zebra crossing in the simulated environment. To enhance
realism, a confederate pedestrian crossed the zebra crossing
while performing a non-verbal road crossing action toward
the participant in the real world. Such a setup would enable
us to capture participants’ affective responses (emotion self-
reports, physiological signals, facial data) with respect to
enacted non-verbal, pedestrian crossing actions. We asked
(RQ2): How do people’s affective responses vary upon
observing non-verbal actions performed by (confederate)
pedestrians within a hybrid driving-simulator setup? To
answer this, we ran a lab-based controlled, driving-simulator
study (N¼ 24), where participants (drivers) drove and
encountered crossing actions enacted by real-world partici-
pants (confederate pedestrians) at mock-up zebra crossings.
Prior works have determined that urgency in driving behav-
ior can impair risk detection and driver emotions, which
can result in aggressive and risky driving (Chou et al., 2007;
Meg�ıas et al., 2011). Accordingly, we also included condi-
tions of driver urgency (driving under a timer) and pedes-
trian visibility prior to walking along the zebra crossing. We
collected drivers’ emotion self-reports, facial expressions,
physiological signals, and pupillometry features (fluctuations
in pupil diameter in response to the video stimulus).

Findings showed that our hybrid setup can effectively
capture driver affective states while driving in a simulated
environment and interacting with real-world pedestrian road
crossing actions. Specifically, we found participants’ self-
reported valence varied significantly across positive, non-
positive and no-action pairs, while self-reported arousal var-
ied significantly for both positive and non-positive actions
in comparison to no-action. Additionally, participants’ skin
conductance (GSR), and heart signals (IBI, BVP, and BPM)
varied significantly across self-reported valence scores for all
three pedestrian action types. Similarly, heart signals (IBI
and BPM), and pupil diameter varied significantly across
participants’ self-reported arousal scores. Participants facial
landmarks and expressions also varied significantly before
and during interaction with the pedestrians, across both
positive and non-positive non-verbal, pedestrian crossing
actions. However, we found no significant impact of driving
conditions (driver urgency and pedestrian visibility) on par-
ticipants’ affective responses.

Our exploratory work comprises a video-based study, fol-
lowed by a hybrid simulator study where participants’ affect-
ive responses (emotion self-reports, physiological and facial
responses) were recorded. In the video-based study, partici-
pants watched videos of pedestrian actions from the drivers
perspective and rated them for valence and arousal. Next, in
the hybrid study, participants drove in a driving simulator
while interacting with confederate pedestrians crossing a
mock-up zebra crossing and enacting positive and non-
positive actions. Our work offers three key contributions: (1)
Validation of non-verbal, pedestrian crossing stimuli
(JAAD videos) that influence participants’ affective states
though multi-modal physiological and camera sensors. (2)
Introduction of a novel hybrid simulator setup for capturing
drivers’ affective responses toward realistic pedestrian actions
within a simulated driving context. (3) Empirical findings
from two studies which reveal that non-verbal, pedestrian
actions influence participants’ self-reported emotions (valence
and arousal), physiological signals, and facial temperatures.
In-car emotion recognition research is particularly interested
in determining a driver’s high arousal as well as low valence
states associated with risky driving (Braun et al., 2022; Sani
et al., 2017). Quantitative results from our study identify posi-
tive and non-positive non-verbal pedestrian crossing actions
that results in high arousal and low valence participant states.
These non-verbal pedestrian actions may aid in identifying
risky driving behavior arising from driver-pedestrian inter-
action. Moreover, the participant affective cues (physiological,
behavioral, and emotion self-reports) may also be used by
empathic, in-car interfaces to automatically infer drivers’
affective states during driver-pedestrian interactions, as part
of an emotion self-regulation framework for improving road
safety (Bethge et al., 2021; Koch et al., 2021).

2. Related work

Several research areas shape our work, including prior
research on: (a) driver-pedestrian non-verbal interactions in
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daily driving scenarios, and (b) measurement of in-vehicle
drivers’ affective responses.

2.1. Non-verbal driver-pedestrian interactions

Prior work indicates that non-verbal communication (e.g.,
body posture) between drivers and pedestrians is a key fac-
tor influencing driving behavior (Habibovic et al., 2018;
Sucha et al., 2017). Studies also investigated different
aspects of driver-pedestrian interactions at zebra crossings,
e.g., eye contact before crossing (Gu�eguen et al., 2015;
Schmidt & F€arber, 2009; Wang et al., 2010). Researchers
demonstrated that pedestrian body language (e.g., hand, leg
and head movement) toward drivers are important cues
that influence positive or negative driver-pedestrian interac-
tions (Gueguen et al., 2016; Kooij et al., 2014; Schulz &
Stiefelhagen, 2015). Other studies investigated the role of
vehicle movement as an implicit form of driver-pedestrian
communication. For instance, drivers may signal their
intent using vehicle stopping and speeding behaviors,
which can influence pedestrian crossing decisions and ped-
estrian responses (Nathanael et al., 2018; Schneemann &
Gohl, 2016). Researchers noted this form of communica-
tion in shared spaces whereby pedestrians demonstrated
pro-social behaviors toward drivers by means of gestures,
such as nodding, smiling, indicating right of way (Wang
et al., 2022). Finally, the role of external Human-Machine
Interfaces (eHMIs) as an extension of driver communica-
tion with pedestrians have also been studied. These studies
concluded that eHMIs may enhance driver-pedestrian
interactions in some critical situations. However, research
has shown that pedestrians were found to be more respon-
sive to drivers and often overlooked the eHMIs
(Bazilinskyy et al., 2022; Bindsch€adel et al., 2021). Despite
the foregoing, research on driver-pedestrian interaction
often tends to overlook the impact of pedestrian actions on
drivers’ emotional states. Therefore, in this study we con-
tribute to a better understanding of the role that non-ver-
bal pedestrian actions play in influencing a person’s
affective state by measuring their self-reports, physiological
signals, and facial features across two controlled lab stud-
ies—first in response to video stimuli, and the second in
response to real-world pedestrians. For the first study,
video stimuli was selected from the Joint Attention for
Autonomous Driving (JAAD) dataset (Kotseruba et al.,
2016), which captures pedestrian behavior at crossings
from the drivers’ perspective. Joint attention, as defined by
Rasouli et al. (2017b), involves the ability to detect and
influence another person’s attentional behavior and recog-
nize them as an intentional agent. It encompasses not only
simultaneous looking, attention detection, and social coord-
ination, but also a deeper understanding of the other per-
son’s behavior as intentional. We selected the JAAD
dataset as it follows the drivers’ perspectives and captures
pedestrian behaviors at the point of crossing, demonstrat-
ing attention between the two parties and the eventual
actions undertaken based on driver-pedestrian interactions
(Kotseruba et al., 2016).

2.2. Emotion models and self-reports

There are broadly two emotion models—discrete emotion
models [e.g., Ekman’s six basic emotions model (Ekman,
1992), Plutchik’s emotion wheel (Plutchik, 2001)], and
dimensional emotion models [e.g., Circumplex emotion
model (Russell, 1980), which consider human emotions as a
combination of valence and arousal; Pleasure-Arousal-
Dominance model (Mehrabian, 1996)], which considers
human emotions to be a combination of valence (displeasure
vs. pleasure), arousal (calm vs. excitement), and dominance.
In an automotive context, a few studies have explored the
most frequently occurring discrete emotions during driving
scenarios. For example, Mesken et al. (2007) found that anx-
iety occurred most frequently, followed by anger and happi-
ness. Based on users ease of use and popularity across
emotion-measurement studies, we employ the Self-
Assessment Manikin (SAM) model with valence and arousal
dimensions, where each dimension runs on a discrete
9-point scale (Bradley & Lang, 1994).

2.3. Sensing emotion cues from multi-modal
physiological and behavioral signals

Affective neuroscience defines affective or emotion responses
as human responses in the form of distinct patterns of con-
scious or unconscious psycho-physiological activity (Barrett,
2017; Fox et al., 2018; Picard, 2000). Such activity includes
changes in autonomic nervous system, facial expressions,
bio-signals, and can be measured using self-report question-
naires, physiological measures (e.g., heart rate, skin conduct-
ance), and behavioral measures (e.g., facial expressions). In
our study, we adopt such a definition of affective responses
in line with prior in-car affect recognition studies. We cap-
ture signals from the participants’ face and eyes, as well as
bio-physiological markers. To capture facial changes, exist-
ing approaches identify the regions of interest (ROIs) from
thermal images of the face and head region (Ma et al., 2017;
Paschero et al., 2012; Zepf et al., 2021). Facial action units
(AU) are next identified within the Facial Action Coding
System (FACS) that aid in observing changes in facial
expressions (Ekman & Friesen, 1978). Bio-physiological sig-
nals include cardiography [e.g., electrocardiograph (ECG),
heart-rate variability (HRV), heart rate (HR)], electrodermal
activity, such as Galvanic Skin Response (GSR), as well as
respiratory and skin temperature related signals (Zepf et al.,
2021). These signals when captured from the driving con-
text, contain significant noise due to car movements and so
is addressed using pre-processing steps like spike removal
(Singh et al., 2013), bandpass filtering (Munla et al., 2015),
and normalization (between 0 and 1) to counter the effect
of different baselines and physiological ranges (Singh et al.,
2013). Work has shown that physiological signals, such as
EDA and HR show higher autonomic activity during favor-
able driving scenarios with the opposite trend during
unfavorable situations (Balconi & Bortolotti, 2012; Helm
et al., 2012).

Very few works combined multiple modalities to measure
drivers’ affective responses. For example, Malta et al. (2008)
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combined EDA and Controller Area Network (CAN) behav-
ior signals to study driver irritation; Rigas et al. (2011) com-
bined several bio-physiological signals, CAN-bus data, and
the Global Positioning System (GPS) signal to study driver
stress. Hoch et al. (2005) and Schuller et al. (2008) com-
bined speech and face to study different sets of driver
emotions. Finally, Bethge et al. (2021) developed a novel
application to classify drivers’ emotions based on context-
ual driving data and drivers’ facial expressions. While the
foregoing work has focused on identifying and classifying
drivers’ emotions using contextual factors, such as traffic
or environmental conditions, there has been less emphasis
on driver-pedestrian non-verbal interactions. Our two
studies provides an initial exploration of the relationship
between multi-modal physiological and behavioral
signals, and pedestrian crossing actions through (a) video
stimuli and (b) real-world pedestrian actions in hybrid
driving simulator settings. Thereby, our combined studies
provide a systematic understanding of the relationship
between driver affective states and non-verbal pedestrian
actions, as well as the suitability of multi-modal sensing
techniques.

3. Study 1: Video stimuli

Our first lab-based study investigates participants’ affective
responses toward video stimuli containing non-verbal, ped-
estrian crossing actions.

3.1. Study design

Our study is a 1 (IV1: Emotion Rating Task) � 2 (IV2:
Pedestrian Crossing Action Video: Positive Action vs. Non-
positive Action) within-subjects design, tested in a con-
trolled, laboratory environment. Participants with driving
experience watched 10 positive and non-positive videos
from the JAAD dataset recorded from the driver’s perspec-
tive. These videos show pedestrians crossing the road and
performing non-verbal actions toward the driver, such as

hand waving, nodding, etc. (Kotseruba et al., 2016). The cat-
egorization of videos into positive and non-positive labels
was determined by prior work that discovered that none of
the JAAD videos were rated as very negative by the partici-
pants (Ghosh et al., 2022).

For each video, participants rated pedestrian actions for
valence and arousal using the 9-point discrete Self-
Assessment Manikin (SAM) (Bradley & Lang, 1994). During
the study, participants’ facial temperatures, pupil diameter
and physiological signals were recorded. Our study followed
strict guidelines from our institute’s ethics and data protec-
tion committee.

3.2. Study setup

Our in-lab study setup consists of the following key compo-
nents: (a) video stimuli, (b) web interface for viewing video
stimuli, and (c) sensors and sensor synchronization module.
Participants are presented with video stimuli through the
web interface, that in turn triggers the sensors module to
record participants’ physiological signals, pupil diameter,
and facial temperatures. Figure 1 shows the setup with the
web-based user interface for displaying video stimuli and
recording participants’ emotion ratings.

3.2.1. Video stimuli
To induce different types (positive, non-positive) of emo-
tions among participants, we draw on a validated set of
JAAD dataset videos from a prior study by Ghosh et al.
(2022). In this prior study, 91 participants viewed 25 pedes-
trian action videos from a driver’s perspective and rated
them for valence (pleasant) and arousal (excitement) on a
5-point scale. Ghosh et al. (2022) thereby identified the top-
five most positive, and bottom-five most non-positive vid-
eos, which we selected for our study. Table 1 shows these 10
JAAD videos, their corresponding pedestrian action and
action type along with the average valence ratings obtained
in prior work by Ghosh et al. (2022).

Figure 1. Study setup with thermal camera and projection screen. Participants wear Pupil Labs eye tracker and watch the projection screen which shows the web-
based user interface for viewing and rating driver-affect inducing stimuli.
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3.2.2. Web-based user interface
To display the video stimuli and collect valence and arousal
self-reports from participants, we developed a web-based
interface (Figure 1(c)), that was projected on a 4600 television
(full HD, LCD, 1920� 1080, 100Hz) shown in Figure 1(b).
Upon entering demographic details using the laptop mouse,
participants pressed the Next button that triggers the inter-
face to send a signal to the hardware setup to start recording
data from all sensors. Given the stimuli was video only,
there was no audio output.

3.2.3. Hardware setup for sensor logs
The hardware setup comprises of the FLIR Duo Pro R ther-
mal camera,3 Empatica E4 wristband,4 and the Pupil Labs
Core wearable eye tracker5 (Figure 1(a)).

The thermal camera facing the participant (without
obstructing their view) is connected to a custom ESP8266
ESP-12 micro-controller, which runs the software for
initiating sensor data recording. When powered, the micro-
controller starts an HTTP server via WiFi, and awaits
commands from the central server. The E4 wristband is con-
nected to an Android mobile device running the
EmpaticaRelay application. Once the wristband is switched
on, it connects to the software running on the micro-
controller, and starts a TCP server to which the central
server will connect to fetch data. Finally, the eye tracker is
connected to a laptop (MacBook Pro, 1.4GHz quad core
Intel i5, 16GB RAM) running the Pupil Labs Capture soft-
ware. Once the tracker is connected and calibrated, the
setup is complete. Thereafter, the experimenter starts the
central recording application, and connects to the sensors
via each specified IP address. The setup triggers recording
of skin conductance, heart rate, facial temperature, and pupil
diameter (PD). Additionally, since pupil diameter is also
quite sensitive to light conditions, we fixed the illumination
in the lab (350 ± 5 lx) to ensure that participants’ pupil
would be unaffected by illumination changes (Pfleging et al.,
2016).

3.3. Study procedure

Before the study, an explanation of the study task was pro-
vided to participants, after which participants’ informed
consent was obtained. After the sensor setup was complete,

participants entered their demographic (age, gender, loca-
tion) and driving experience details (years of experience,
country where they mostly drove) on the web interface.
Upon entering their details, the sensors were synced and
the first video stimuli was shown. Following prior work
by Lutz et al. (2008), we ensured 10 s of black screen
before and after each video to decrease the effects of par-
ticipants’ emotions overlapping between different videos
(Lutz et al., 2008). After each video, participants entered
their valence and arousal ratings using a 9-point discrete
SAM scale (Figure 1(c)). Positive and non-positive action
conditions were counterbalanced across all participants,
with the subsequent trials randomized. Upon completion
of the study session, a brief, semi-structured interview was
conducted to gather participants’ overall impression of the
study. The complete study lasted �60min and participants
were provided with a 10 Euro gift card for participation.

3.4. Participants

For this study, participants were required to be at least
21 years of age and have a minimum driving experience of
1 year. Participants were also required to not wear eyeglasses
that may otherwise impact eye tracking. Twenty-one6 partic-
ipants (7f, 14m) aged between 22 and 64 (M¼ 32.4,
SD¼ 11.6) were recruited. Participants were recruited from
academic institutes, and comprised diverse cultural back-
grounds (66% European, 24% Asian, and 10% North
American). 76% of participants had at least three years of
driving experience in Western Europe (M¼ 9.8, SD¼ 10.7).
None reported visual (including color blindness), auditory,
or motor impairments.

4. Study 1: Results

In this section, we discuss data pre-processing steps under-
taken and report results of participants’ affective response
analysis. Specifically, we discuss: (a) variation across emotion
self-reports, (b) variation across physiological signals, and
(c) variation across facial temperature in different regions of
the face with respect to different pedestrian action types. We
also summarize the post-study feedback obtained from
participants.

Table 1. The 10 JAAD videos used as participant (driver) emotion-inducing stimuli in this study.

JAAD video ID Pedestrian action Action type 5-Point avg. valence rating)

video_0299 handwave Positive 4.03
video_0165 nod Positive 4.0
video_0135 handwave Positive 3.92
video_0303 nod Positive 3.89
video_0249 eye_contact Positive 3.88
video_0054 handwave Non-positive 2.79
video_0107 hesitant_crossing Non-positive 2.77
video_0092 running_in_the_middle Non-positive 2.47
video_0066 impolite_hand_gesture Non-positive 2.3
video_0272 engage_with_phone Non-positive 2.13

These 10 videos were identified in a prior study based on the average 5-point valence ratings (Ghosh et al., 2022). Additionally, a
positive handwave action video (video_0054) was rated as non-positive by participants (Ghosh et al., 2022).
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4.1. Data pre-processing

We performed different pre-processing steps prior to analyz-
ing the data (resulting dataset is shown in Table 2). These
steps are described below:

4.1.1. Pedestrian action segmentation from video stimuli
Given our interest in studying affective responses of partici-
pants toward pedestrian crossing actions, videos from the
JAAD dataset had to be segmented to the relevant aspect of
the video, i.e., the part where the pedestrian action occurred.
The duration of the pedestrian actions in the videos were
identified by adapting the temporal localization method
which is used in activity annotation (Heilbron & Niebles,
2014).

Annotators (N¼ 7) from our institute were asked to
mark the beginning start set and end set of a pedestrian
action in the 10 JAAD videos. From this, K-means cluster-
ing was used and the centroid of majority clusters (clusters
having most data points) for the start set and the end set
were used to mark the beginning and the end of an action
(Likas et al., 2003). To ensure validity of the annotations,
and since time is on a continuous scale, we computed the
intra-class correlation coefficient (ICC) for the action start
and end points which are 0.997 and 0.980, respectively
(Ranganathan et al., 2017). We used the time values to
extract participants’ physiological signals corresponding to
the segmented pedestrian action videos. Finally, for each
pedestrian, we normalized the physiological signal values to
handle inter-subject variability (Dawson et al., 2016; Taib
et al., 2014). We scaled as follows:

x0 ¼ x�minðXÞ
maxðXÞ�minðXÞ (1)

where X is the set of values recorded for a signal across all
individuals, x is one instance of the set X, min(X), max(X)
indicate minimum and maximum of the set X.

4.1.2. Valence-arousal ratings transformation
Valence and arousal self-reports corresponding to each video
were collected from every participant. In line with the study
by Ghosh et al. (2022), which revealed that no videos were
rated as very negative (valence scores �2), valence scores
were grouped into positive or non-positive categories
depending on whether they were �3 or <3, respectively.
Similarly, arousal scores were categorized as high or non-
high scores (Ghosh et al., 2022). Following Russell’s dimen-
sional model of emotion, positive versus non-positive
valence and high versus non-high arousal relates to emotion

categories mapped along the axes of valence and arousal
(Russell, 1980).

4.1.3. Signal cleaning and sensor sampling
We streamed continuous data from the FLIR thermal cam-
era that recorded thermal images; the wearable eye tracker
which recorded pupil diameter, and Empatica wristband
which recorded skin conductance in the form of galvanic
skin response (GSR) and heart rate in the form of blood
volume pulse (BVP). First, missing and incorrectly captured
values (e.g., NaN) were removed from sensor readings (�3%
samples). Furthermore, since the signals had different sam-
pling rates (thermal camera: 30 FPS, eye tracker: 200Hz,
wristband—GSR: 4Hz and BVP: 64HZ), we sampled every
signal at a uniform rate of 30Hz (corresponding to facial
thermal camera). BVP was further filtered using second
order Butterworth lowpass filtering and Stationary Wavelet
Transform (SWT) 7th level Daubechies mother wavelet
(Nason & Silverman, 1995). Inter-beat Interval (IBI) that
represents intermittent heart rate7 was extracted from BVP
and used for the analysis. The raw GSR signals were first fil-
tered using a low-pass filter with a 2Hz cutoff frequency to
remove noise. Then, changes were calculated using the
mean of the non-negative, first-order differential of GSR sig-
nals (Fleureau et al., 2013; Wang & Cesar, 2017).

4.2. Emotion self-report variation across pedestrian
action videos

We first examined the variance in emotion self-report
(valence, arousal) ratings (ranging from 1 to 9) across posi-
tive and non-positive pedestrian crossing action types as
observed in the videos. The median valence ratings for posi-
tive and non-positive actions are 6 and 4, respectively. Since
the Shapiro-Wilk test revealed that the responses did not
follow a normal distribution (p< 0.05), we ran a Mann–
Whitney U test to evaluate the difference in the responses
from the 9-point Self-Assessment Manikin (SAM) scale.
Figure 2(a) shows a significant effect of action type on
valence ratings (U¼ 8317, Z¼�6.44, p< 0.05, r¼ 0.44).
Similarly, the median arousal ratings for the positive and
non-positive actions are 5 and 6, respectively. Once again,
Mann–Whitney U test revealed a significant effect of action
type on the arousal ratings (U¼ 3023.5, Z¼ 5.74, p< 0.05,
r¼ 0.40), as seen in Figure 2(b).

To summarize, the Mann–Whitney U test shows both
valence and arousal self-report scores to vary significantly
(p< 0.05) between positive and non-positive two action
types.

4.3. Physiological signal variation across pedestrian
action videos

We next investigated the variations in IBI, mean pupil diam-
eter (PD) and GSR changes across positive and non_positive
action types. Box-plots in Figures 3(a–c) show these changes
between two action types (as observed in the videos) for the

Table 2. Final dataset details after pre-processing.

Parameter Values

Total thermal frames 6594
Total GSR samples 6594
Total IBI samples 6594
Total pupil diameter (PD) samples 6594 (for each eye)
Total valence self-reports 210 (Pos: 60.0%. Non-pos: 40.0%)
Total arousal self-reports 210 (High: 68.6%, Non-high: 31.4%)
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IBI, mean PD, and GSR signals, respectively. All three sig-
nals were normalized and follow the range ð0:00, 1:00Þ: A
Shapiro–Wilk test showed that IBI values are not normally
distributed (p< 0.05).8 Despite having an equal number of
positive and non-positive actions, the variability in the
action duration resulted in unequal samples being collected
from the two action types. As a result, we performed an
unpaired Mann–Whitney U test. The median IBI (normal-
ized) for positive and non-positive actions are 0.66 and 0.63,
respectively. Here, we find a significant effect of action type
on the IBI values (U¼ 4,031,220, Z¼�4.10, p< 0.05,
r¼ 0.05). Next, the median value of mean PD (normalized)
for positive and non-positive actions are 0.97 and 0.99,
respectively. We find a significant effect of action type on

mean PD (U¼ 209,373, Z¼ 62.574, p< 0.05, r¼ 0.81).
Finally, median changes in GSR are found to be 0.002 and
0.006 for positive and non-positive actions. We again
observe a significant effect of action type on GSR change
(U¼ 159,294, Z¼ 14.479, p< 0.05, r¼ 0.37).

We also compared the changes in physiological signals
across two levels of self-reported valence (positive vs. non-
positive) and arousal (high vs. non-high) scores. Figure 4
shows the IBI, mean pupil diameter (PD), and GSR changes
boxplots across positive and non-positive levels of valence.
Mann–Whitney’s U tests revealed a significant effect of
valence level on IBI values (U¼ 2,485,728, p < 0:05,
r¼ 0.30) and GSR values (U¼ 6,444,711, p < 0:05, r¼ 0.09).
However, we do not find a significant effect of valence level

Figure 2. Comparison of emotion self-report ratings across different action types present in the video: (a) valence rating (b) arousal rating. Mann–Whitney U test
shows both valence and arousal self-report scores to vary significantly (p< 0.05) between two action types.

Figure 3. Variation in physiological signals for different pedestrian action types: (a) IBI variation (b) mean PD variation (c) GSR change variation. All values are found
to vary significantly (p< 0.05) using Mann–Whitney U test. The plots for Mean PD and GSR changes are zoomed in to show the minute changes, however still follow
the normalized range of 0.00–1.00.

Figure 4. Variation in physiological signals for different level of valence: (a) IBI variation (b) Mean PD (Pupil Diameter) variation (c) GSR variation. GSR and IBI values
are found to vary significantly (p< 0.05) for valence using Mann–Whitney U test.
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on mean PD. Similarly, Figure 5 shows the variance in
physiological signals for high and non-high levels of
arousal scores. The Mann–Whitney U test shows that
arousal level has a significant effect on all three signals:
IBI (U¼ 1,939,099, p < 0:05, r¼ 0.36), mean PD
(U¼ 4,693,302, p < 0:05, r¼ 0.10) and GSR (U¼ 4,249,954,
p < 0:05, r¼ 0.08).

We see that IBI, mean PD and GSR values are found to
vary significantly (p< 0.05) for different pedestrian action
types using the Mann–Whitney U test. Moreover, we see
variation in IBI, Mean PD and GSR for different levels of
valence and arousal.

4.4. Facial temperature variation across pedestrian
action videos

Facial images (frames) captured by the thermal camera were
analyzed to understand variance in facial temperatures
across participant self-reports (valence and arousal). For
this, we extracted frame-level median values from different
regions of interest (ROIs) of the face: face, mouth, nose, and
cheeks (both sides). Figure 6 shows a representative thermal
image with different ROIs tagged for a subject. We extracted
and aggregated median values of ROIs [normalized and with

range ð0:00, 1:00Þ] on each frame for all users. We grouped
median values independently into two categories based on
the self-reported values of valence (positive vs. non-positive)
and arousal (high vs. non-high). Next, we examined the
valence-wise and arousal-wise variation for different ROIs.
A Shapiro–Wilk test revealed that median values did not fol-
low a normal distribution (p< 0.05). The Mann–Whitney U
test therefore revealed that the frame-wise median values for
all ROIs vary significantly (p< 0.05) for two levels of valence
(Figure 7) and arousal (Figure 8), respectively. The summary
statistics for median valence and arousal variation shown in
Tables 3 and 4, respectively. Therefore, median valence vari-
ation in frame-wise ROIs for: (a) Face, (b) Nose, (c) Mouth,
(d) Cheek1, and (e) Cheek2 all vary significantly (p< 0.05)
across two levels of valence and arousal using Mann–
Whitney U test.

5. Study 2: Hybrid driving simulator

For our second study, we designed a hybrid driving simula-
tor setup (Figure 9(a)) to capture driving context and realis-
tic driver-pedestrian interactions during non-verbal
pedestrian road crossing scenarios. The hybrid nature of the
setup is achieved by combining a simulated driving

Figure 5. Variation in physiological signals for different level of arousal: (a) IBI variation (b) Mean PD (Pupil Diameter) variation (c) GSR variation. GSR, IBI and mean
PD values are found to vary significantly (p< 0.05) using Mann–Whitney U test.

Figure 6. Facial landmarks are used to automatically generate different ROIs on the face from which the thermal features are extracted.
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Figure 7. Median valence variation in frame-wise ROIs for: (a) face, (b) nose, (c) mouth, (d) cheek1, and (e) cheek2. All ROI frame-wise median values vary signifi-
cantly (p< 0.05) across two levels of valence using Mann–Whitney U test.

Figure 8. Median arousal variation in frame-wise ROIs for: (a) face, (b) nose, (c) mouth, (d) cheek1, and (e) cheek2. All ROI frame-wise median values vary signifi-
cantly (p< 0.05) across two levels of arousal using Mann–Whitney U test.
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environment with real-life confederate pedestrians. During
the experiment, participants drive a car using a driving
simulator and view the road environment on a projected
screen. They interact with a confederate pedestrian who
walks across a mock zebra crossing placed in front of the
screen and performs non-verbal actions toward the
participant.

5.1. Study design

Our study follows a 3 (IV1: Pedestrian Action: Positive vs.
Non-positive vs. None) � 2 (IV2: Urgency: Urgent vs. Non-
urgent) � 2 (IV3: Pedestrian Visibility at Crossing: Visible
vs. Hidden) within-subject study design. The hybrid simula-
tor setup comprises of a mock-up zebra crossing placed in
front of a driving simulator. Participants with driving
experience (drivers) drove in the driving simulator, and
encountered pedestrian confederates who performed non-
verbal actions toward the drivers while using the zebra

crossing. We had three positive actions, and three non-
positive actions. To lower the predictability of the driving
setup, two additional conditions were introduced: Urgency
and Visibility. The two types of urgency conditions were—
(a) Urgent where the driver needs to complete the track
within 60 s, a duration that was empirically determined to
be suitable for our study setup (b) Non-urgent where the
driver has no time limit. The two scenarios for the pedes-
trian’s visibility are—(a) Seen where the pedestrian is waiting
at the zebra crossing and visible to the driver from a dis-
tance, (b) Not seen where the pedestrian appears in the driv-
er’s field of view only when the driver is close to the virtual
zebra crossing.

During the study, the participant always drove from a
starting point to an end point along a pre-designed route
(trial). To simulate a real-world crossing, a zebra crossing
was also placed on the route (Figure 9(a)). The study con-
sisted of two sessions, where a session has either urgent or
non-urgent trials. As a result, there are 6 (number of) � 2
(pedestrian’s visibility at the zebra crossing) ¼ 12 trials in
every session. To further account for any familiarity effects
of the pedestrian actions on the driver, we also included
four no_action trials randomly within every session, where
no interaction between the driver and pedestrian occurs.
Therefore, there are 16 trials (12 action trials and four no-
action trials) in every session. The order of the trials is
randomized within a session. In all cases, the participant is
prompted to report their emotion with respect to the pedes-
trian’s action at the end of the trial. The self-report popup is
shown in Figure 9(b). At this point, the simulator pauses
and the participant verbally reports the valence and arousal
scores on a 9-point discrete Self-Assessment Manikin (SAM)
scale (Bradley & Lang, 1994). As soon as these values are
recorded, the next trial begins. Once all the trials in a ses-
sion are completed, the experimenter terminates the session
by clicking on the Exit Game button of the self-report

Table 3. Summary statistics for median valence variation in participants’
regions of interest (ROIs).

Region of interest (ROI) U-statistic p-Value Effect size

Face 276813407.0 0.05 0.249
Nose 285484450.5 0.05 0.156
Mouth 291888256.0 0.05 0.154
Cheek1 304665302.0 0.05 0.107
Cheek2 299927749.5 0.05 0.114

Table 4. Summary statistics for median arousal variation in participants’
regions of interest (ROIs).

Region of interest (ROI) U-statistic p-Value Effect size

Face 252,934,818.5 0.05 0.251
Nose 258,534,915.0 0.05 0.153
Mouth 269,701,814.5 0.05 0.134
Cheek1 274,233,501.0 0.05 0.105
Cheek2 274,306,008.5 0.05 0.068

Figure 9. Study setup for the hybrid driving simulator study that combines a simulated driving environment with real world pedestrians. In this hybrid setup, the
participant drives a car using a driving simulator. The participant views the road environment on the projected screen while interacting with a confederate pedes-
trian who walks across a mock-up zebra crossing placed before the screen.
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screen (Figure 9(b)). This stops recording data from all the
devices. During the study, participants’ facial expressions,
temperatures, pupil diameter and physiological signals were
recorded. Figure 9(a) shows the study setup.

5.1.1. Stimuli
Non-verbal pedestrian crossing actions were selected based
on our visual stimuli-based lab study (c.f., Section 3), as well
as prior works (Ghosh et al., 2022; Kotseruba et al., 2016;
Yang, 2017). The choice of which actions to perform were
empirically determined, and constrained by how visible they
were to participants, and how reproducible they could be
performed by our confederates. Pedestrians in our study
performed positive and non-positive actions, where positive
actions include handwave, smile, and nod, and non-positive
actions include stay_back, impolite_hand_action, inattentive_
with_phone. Figure 10 shows a representation of these
actions.

5.2. Hardware and software

Our complete study setup is shown in Figure 9(a) and con-
sists of (a) Gaming environment and, (b) Sensor setup for
physiological and thermal imaging recording.

5.2.1. Gaming environment
We developed the gaming environment based on Unreal
Engine9 and deployed it on Microsoft Airsim.10 The gaming
environment provides Unity-objects to enable driving in a
city-like environment. It consists of a road segment with a
pedestrian crossing object, where the driver-pedestrian inter-
action happens (based on the experimental condition). The
gaming environment makes a TCP connection to connect
the sensors module. At the start of the game, this connec-
tion is established, which is maintained throughout the ses-
sion. The gaming module also implements a timer-based
functionality to implement the urgency condition by display-
ing the elapsed time since starting the trial.

5.2.2. Integrating sensors module
A sensor synchronization application (Figure 11) was devel-
oped to start and stop recording participants’ data by sync-
ing the FLIR Thermal Camera wirelessly through a custom
WiFi-connected board, a Pupil Labs eye tracker via ZeroMQ
and an Empatica E4 wristband connected to a phone via an
Android app. This synchronization module connects with
the gaming environment as soon as the signal is sent from
the gaming environment. The thermal camera connected to
a custom ESP8266 ESP-12 micro-controller starts an HTTP

Figure 10. Representation of all the six actions as performed during the study. The first three actions (a–c) are considered as positive, while the next three actions
(d–f) are considered non-positive.
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server via WiFi. The E4 wristband connected to an Android
mobile device running the EmpaticaRelay application, con-
nects to the software running on the micro-controller, and
starts a TCP server to which the central server will connect
to fetch data. Finally, the eye tracker connected to a laptop
(MacBook Pro, 1.4GHz quad core Intel i5, 16GB RAM)
runs the Pupil Labs Capture software. In this manner, at the
beginning of every trial (in the gaming environment) all the
sensors are synced. The video data is stored on the camera;
and eye tracker data and physiological signals are recorded
on the machine running the Unreal Engine. Additionally,
we fixed and monitored illumination (350 ± 5 lx) near the
participant’s face by using an LED ring light (to prevent
interference with participant’s facial temperature) and a
luminance level lamp (Pfleging et al., 2016).

5.3. Study procedure

We depict the study procedure in Figure 12. Participants
were introduced to the study, after which we obtained par-
ticipant consent, demographic details and participant
responses to a pre-study simulator questionnaire (SSQ). A
demo driving session was provided to familiarize partici-
pants with the driving environment. Participants were asked
to wear the Empatica E4 wristband (on a non-dominant
hand), and the eye tracker. The thermal camera, Microsoft

Kinekt camera were also turned on and synced using the
sensor synchronization application. At the end of this setup,
the first driving session (Session I in Figure 12) was initi-
ated, triggering recording of data from all the devices
(Empatica wristband, eye tracker, dual camera). In every
trial, participants drove on the given track and encountered
a pedestrian (except during no_action trials) at the zebra
crossing. The pedestrian performed a non-verbal action
while crossing the zebra crossing. After crossing, the partici-
pant resumed driving till they reached the end of the track
whereby participants were prompted for their emotion self-
report. The emotion (valence, arousal) ratings were collected
on a 9-point Self-Assessment Manikin (SAM) scale (Bradley
& Lang, 1994). The second session (Session II as highlighted
in Figure 12) began after a 5min break upon completion of
the first session. The session was identical to Session I, with
the exception of the urgency condition. To counter the par-
ticipant’s bias for a specific urgency condition, Session I and
Session II were counterbalanced across participants. At the
end of Session II, participants filled out the simulator sick-
ness questionnaire (SSQ), and underwent a brief exit inter-
view, which concluded the study. During the study,
COVID-19 safety protocols were followed at all times. The
pedestrians did not wear a face mask (given the need to
enact actions, such as smiling), so maintained the minimum
distance with the participant (>6 ft). All the devices and

Figure 11. Sensor synchronization application for simultaneously starting and stopping recording of the FLIR thermal camera, Pupil Labs eye tracker and
Empatica E4.

Figure 12. Study procedure for the hybrid simulator study that lasted between 65 and 85min.
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surfaces were sanitized in between each participant. The
complete study lasted �60–90min, and due to the variable
study length, participants were provided with a 20 Euro
monetary compensation for participation. Our study fol-
lowed strict guidelines from our institute’s ethics and data
protection committee.

5.3.1. Participants
For this study, participants were required to be at least
21 years of age and have a minimum driving experience of
at least 5 years in Western Europe (M¼ 17.7, SD¼ 10.8).
Participants were also required to not wear eyeglasses that
may otherwise impact eye tracking. Twenty-four11 partici-
pants (12f, 12m) aged between 23 and 64 (M¼ 37.9,
SD¼ 11.6) were recruited. Participants were recruited
through a recruitment agency, and all resided in Europe.
None reported visual (including color blindness), auditory,
or motor impairments. Additionally, we recruited two
experiment confederates (33 year old male; 23 year old
female) to act as pedestrians to enact non-verbal crossing
actions. Both confederates underwent training sessions to
ensure that the performed actions were identical. To avoid
any potential effects from interacting with a male/female
pedestrian, half of the driving participants observed positive
actions from the male pedestrian confederate, while the
other half encountered positive actions from the female ped-
estrian confederate.

6. Study 2: Results

We report our analysis of participants’ (drivers) affective
responses from the hybrid simulator study. We first explain
the data pre-processing steps undertaken and thereafter dis-
cuss: (a) emotion self-report analysis, (b) physiological signal
analysis, (c) facial data analysis, and (d) driving behavior
analysis. Our study had driving conditions of urgency and
pedestrian visibility, however these showed no significant
results, and therefore omitted from subsequent analyses.

6.1. Data pre-processing

The Empatica wristband recorded participants’ signals in the
form of galvanic skin responses (GSR), and blood volume
pulse (BVP). Additionally, we streamed continuous data in
the form of thermal and RGB images from the FLIR camera
and recorded pupil diameter from the wearable eye tracker.
This data underwent several pre-processing steps prior to
analysis and the resulting dataset is summarized in Table 5.
The data pre-processing steps are described below:

6.1.1. Before and during driver-pedestrian interactions
To identify participant signals associated with the pedestrian
crossing actions, before-action and during-action segments
were defined. We empirically defined before-action to be 10 s
prior to when the pedestrian started crossing, where we
chose to accommodate this larger window as it allowed us
to capture the driving state prior to the participant witness-
ing a pedestrian. For during-action, we defined this as the
period from when the pedestrian started crossing the road
until the self-report prompt appeared on the screen. This
allowed us to focus on the action itself, where some actions
are shorter in duration (e.g., nod, impolite hand action)
than others (e.g., smile, inattentive with phone).

6.1.2. Valence-arousal ratings transformation
Valence and arousal self-reports corresponding to each ped-
estrian interaction were collected from every participant.
Following the approach by Ghosh et al. (2022), we grouped
valence scores into positive or non-positive categories
depending on whether they were �3 or <3, respectively.
Similarly, arousal scores were categorized as high or non-
high scores.

6.1.3. Signal cleaning and sensor sampling
First, missing and incorrectly captured values (e.g., NaN)
were removed from all sensor readings (�7% samples).
Given the different sampling rates across signals (thermal
camera: 30 FPS, eye tracker: 200Hz, wristband—GSR: 4Hz
and BVP: 64Hz), all signals were sampled at a uniform rate
of 30Hz (corresponding to the thermal camera).
Physiological signals captured by the Empatica included
blood volume pulse (BVP) and galvanic skin response
(GSR). BVP was filtered using second order Butterworth
lowpass technique, and Stationary Wavelet Transform
(SWT) 7th level Daubechies mother wavelet (Nason &
Silverman, 1995). Inter-beat Interval (IBI) that represents
intermittent heart rate,12 and heart beats per minute (BPM)
were extracted from BVP and used for the analysis. GSR sig-
nals were also filtered using a second order Butterworth
lowpass technique with a 2Hz cutoff frequency to remove
noise. Then, changes were calculated using the mean of the
non-negative, first-order differential of GSR signals
(Fleureau et al., 2013; Wang & Cesar, 2017).

6.2. Emotion self-report variation across action types

We first examined the effect of positive, non-positive, and
no-action types on self-reported driver valence and arousal
scores (ranging from 1 to 9). Figure 13(a) shows self-
reported valence scores grouped by the three action
types and compared using Kruskal Wallis test. The Kruskal
Wallis test revealed a significant effect of action type on
valence self-reports [v2ð2Þ ¼ 304:93, p < 0:001]. Following
Zimasa et al. (2019), a post-hoc Mann–Whitney test with
Bonferroni correction also showed significant differences
between every pair of action types—pos and non_pos
(U ¼ 74, 773:5, p < 0:001, r ¼ 0:70), non_pos and no_action

Table 5. Final dataset details from the hybrid simulator study.

Modality Sensor Total

IBI Empatica E4 598,697
BPM Empatica E4 598,697
BVP Empatica E4 599,476
GSR Empatica E4 599,476
Pupil Pupil Labs 598,323
Thermal frames FLIR dual camera 720,673
RGB frames FLIR dual camera 720,673
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(U ¼ 10, 049:5, p < 0:001, r ¼ 0:53), and pos and no_action
(U ¼ 22, 633:5, p < 0:001, r ¼ 0:13). Likewise, Figure 13(b)
shows the analysis for arousal scores where Kruskal Wallis
test revealed a significant effect of action type on arousal
self-reports [v2ð2Þ ¼ 22:313, p < 0:001]. A post-hoc test
using Mann–Whitney with Bonferroni correction showed
significant differences between action type pairs—non_pos
and no_action (U ¼ 32, 232:5, p < 0:001, r ¼ 0:17), and
pos and no_action (U ¼ 43, 594:5, p < 0:001, r ¼ 0:21).
Therefore, valence self-report analysis showed significant
(p< 0.05) effect of action type between all three action pairs,
while arousal analysis revealed significant (p< 0.05) effect of
action type between positive and no-action pairs.

6.3. Physiological response variation across action types

Following prior work that studied driver affect in driving
simulators, skin conductance (GSR), heart data (BVP, BPM,
and IBI), and pupil diameter (mean PD) were analyzed for
their variation in standard deviation (Hu et al., 2018;
Maga~na et al., 2020). This is in contrast to examining nor-
malized, mean values in our earlier video-stimuli study. This
was conducted across the three action types—pos, non-pos,
no-action. The Shapiro–Wilk test revealed a non-normal dis-
tribution for all signals (p< 0.05), upon which Kruskal
Wallis tests showed that the three action types had no

significant effect (p< 0.05) on GSR, BVP, BPM, IBI, and
mean PD values. Physiological signals were also analyzed for
changes corresponding to participants’ self-reported valence
and arousal scores. Non-normalized GSR ranging from (0,
5), IBI from (0.6, 1.1), BPM from (50, 110) and mean PD
from (4.9, 5.34). Figure 14 shows the variation of the stand-
ard deviation of signals across positive and non-positive lev-
els of valence ratings. Since the Shapiro–Wilk test indicated
a non-normal distribution (p< 0.05), the Mann–Whitney’s
U tests showed a significant effect (p< 0.05) of action type
on GSR values (U¼ 57,891, p< 0.001, r¼ 0.09), IBI values
(U¼ 56,477, p< 0.001, r¼ 0.21) and BPM values
(U¼ 55,512, p< 0.001, r¼ 0.32) only.

Likewise, Figure 15 shows the variance in the standard
deviation of physiological signals for high and non-high lev-
els of arousal scores. Mann–Whitney’s U test indicated that
the two levels of arousal scores have a significant effect on
IBI (U¼ 56,522, p< 0.05, r¼ 0.24), BPM (U¼ 55,512,
p< 0.001, r¼ 0.32) and mean PD (U¼ 99,123, p< 0.001,
r¼ 0.41).

Therefore, we observe significant variation (p< 0.05) in
standard deviation of physiological signals across two levels
of valence for GSR, IBI and BPM signals. On the other
hand, IBI, BPM, and mean PD show significant (p< 0.05)
variance in standard deviation for two levels of arousal.

Figure 13. Action-type wise emotion self-report variation for (a) valence score comparison reveals a significant effect of action type between all action pairs. (b)
Arousal score comparison reveals a significant effect of action type between (non_pos and no_action), (pos and no_action).

Figure 14. Mann–Whitney’s U test shows significant variation (p< 0.05) in the standard deviation of physiological signals across two levels of valence for (a) GSR,
(b) IBI, and (c) BPM.
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6.4. Facial analysis

The FLIR camera gathered thermal and RGB videos of par-
ticipants from which we analyzed (a) the dispersion of the
combined thermal facial landmarks (mouth, nose, both
cheeks, and face) across time, and (b) the facial action units
corresponding to facial expressions. Given the more realistic
participant-pedestrian interactions within the hybrid simula-
tor study (compared with watching video stimuli), we pro-
ceeded to analyze facial action units (FAUs). FAUs in such
contexts can better capture subtle and micro facial changes,
which are more likely to be elicited as a result of partici-
pant-pedestrian interactions within a controlled, lab-based
experiment where persons interacts in a face-to-face manner
(Ihme et al., 2018; Zhi et al., 2020). We examined the
change in participants’ facial expressions before (before
action) and during observing the pedestrian crossing action
(during action). This analysis was performed across the three
action types—(pos, non_pos, and no_action). Finally, we ana-
lyze variation in facial landmarks and expressions corre-
sponding to participants self-reported valence and arousal
scores.

6.4.1. Thermal facial landmarks analysis
We used thermal data to identify salient points known as
facial landmarks on participants’ faces using Openface
(Zadeh et al., 2017). From these, we extracted hand-crafted
features by measuring the mobility of the face to different
stimuli, i.e., different pedestrian crossing actions (Masip
et al., 2014). Following Masip et al. (2014), for a video com-
posed of N frames f1… fN, the center of each frame fi is
defined as the average x and y coordinates of the 66 land-
marks appearing in fi. The dispersion of fi is defined to be
the average distance of the 66 landmarks to the center. We
computed the standard deviation of the dispersion of all the
landmarks in frames f1… fN, and the difference between
the maximum and minimum dispersions manifested in the
frames f1… fN.

Figure 16 shows the comparison for the standard devi-
ation values of the max-min and standard deviation of the
dispersion values of all the landmarks. For both measures, a
Shapiro–Wilk test revealed the underlying distribution to be
non-normal (p< 0.05). Given that the data is paired and

from the same modality, we carried out a Wilcoxon signed-
rank test. For the standard deviation of the max-min
measure, we found significant differences for pos (W ¼
9:0,Z ¼ 4:61, p < 0:05, r ¼ 0:67), non_pos (W ¼ 17:0,
Z ¼ 4:22, p < 0:05, r ¼ 0:61), and no_action (W ¼ 49:0,Z ¼
2:99, p < 0:05, r ¼ 0:43). Also, the standard deviation of the
standard deviation of the dispersion showed significant dif-
ferences for pos (W ¼ 45:0,Z ¼ 3:12, p < 0:05, r ¼ 0:45),
non_pos (W ¼ 41:0,Z ¼ 3:27, p < 0:05, r ¼ 0:47), and no_
action (W ¼ 78:0,Z ¼ 2:06, p < 0:05, r ¼ 0:30). Finally, we
examined variation in facial landmarks corresponding to
participants’ self-reported valence and arousal scores. Here,
we found no significant differences in facial landmarks for
two levels of valence (pos and non-pos) and arousal (high
and non-high) scores.

We therefore see significant differences (p< 0.05) in the
standard deviation values for the dispersion of the facial
landmarks across frames before and during the interaction
with the pedestrian for all the trials.

6.4.2. Facial expressions analysis
We analyzed RGB data gathered by the FLIR camera using
the Facial Action Coding System (FACS), which defines a
set of facial muscle movements corresponding to an emotion
(Clark et al., 2020). Changes in facial expressions of partici-
pants were recorded using degree of activation (0–5) of the
facial action units (AU) across time, to identify differences
between the data recorded before the driver-pedestrian
interaction (before action), and the data from the moment
the pedestrian is visible to the driver until the self-report
prompt (during action) (Ekman & Friesen, 1978). We com-
pared the facial data across different action types—(pos,
non_pos, and no_action) and computed the standard devi-
ation values for each segment of time for each AU (Ihme
et al., 2018). In all three cases (action types), a Shapiro–
Wilk test revealed non-normal data distribution (p < 0:05).
A Wilcoxon signed-rank test was instead used since data is
paired and from the same modality. We found eight signifi-
cant differences for positive trials, 14 for non-positive, and
five for no-action trials, which are reported in Appendix
Section A, Tables A1–A3, respectively. We also examined
the changes in facial expressions of participants

Figure 15. Signal variation in standard deviation across two levels of self-reported arousal scores for (a) IBI, (b) BPM, and (c) mean PD. We observe a significant
(p< 0.05) effect of self-reported arousal on IBI, BPM, and mean PD.
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corresponding to self-reported valence and arousal scores.
As the Shapiro–Wilk test revealed non-normal data distribu-
tion (p< 0.05), the Mann–Whitney U Test indicated that
there was a significant effect of self-reported arousal scores
on AU06 indicative of raised cheeks (U ¼ 404:0,
p < 0:05, r ¼ 0:54). Our FACS analysis revealed eight sig-
nificant (p < 0:05) differences for positive trials, 14 for non-
positive, and five for no-action trials reported in Appendix
Section A.

6.5. Driving behavior analysis

The car driving simulator developed using AirSim13

recorded participants’ speed (m/s) and braking behavior (0
indicating no brake to 1 indicating full brake). Kinematic
quantities of position, orientation and linear velocity were
recorded using the North East Down (NED) coordinate sys-
tem. The car controls were set to automatic driving, and the
positions and orientations were aligned as per the location
of the road segment provided within the city environment.
We analyzed the driving behavior of participants with
respect to the three pedestrian action types (pos, non_pos,
no_action). Particularly, we investigated the change in mean
velocity (m/s) and braking behavior of the participants after

encountering different actions (Zhao et al., 2021). This is
because driving velocity and braking have been shown to
serve as reliable indicators for identifying a range of driver
emotions (Roidl et al., 2014; Schmidt-Daffy, 2012). The
mean velocity (m/s) for the three action types are—pos:
12.80 m/s, non-pos: 13.10 m/s, no-action: 12.50 m/s and the
standard deviations of velocity are—pos: 1.8 m/s, non-pos:
1.89 m/s, no-action: 1.78 m/s. The mean braking (0–1) for
the three action types are—pos: 0.71, non-pos: 0.68, no-
action: 0.74 and the standard deviations of braking (0–1)
are—pos: 0.20, non-pos: 0.21, no-action: 0.17. Figure 17
summarizes the mean velocity and brake across the three
action types.

Using the Kruskal Wallis test, we found that the mean
trial-wise velocity [v2ð2Þ ¼ 0:152, p ¼ 0:926] and mean trial-
wise braking responses [v2ð2Þ ¼ 1:824, p ¼ 0:401] do not vary
significantly across different pedestrian action types. The
results indicate that the pedestrian actions in the study did
not influence simulator driving behavior (speed and braking).

7. Discussion

In this section, we discuss the key findings from our video-
based study and the hybrid simulator study. We highlight

Figure 16. Comparison of the STD values for the dispersion of the facial landmarks across frames before and during the interaction with the pedestrian for all the
trials.
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future steps to be undertaken to address limitations in our
work.

7.1. Key findings

To validate whether positive and non-positive pedestrian
crossing actions can impact driver emotions, we conducted
two systematic in-lab studies. First, we designed an explora-
tory, in-lab setup using a combination of thermal, physio-
logical and eye tracking sensors to record participants’
affective states in response to non-verbal, pedestrian crossing
videos from the JAAD dataset (cf. Section 3.2.1). Our in-lab
study showed the influence of non-verbal, pedestrian actions
on participants’ physiological responses, facial temperature
as well as emotion self-reports: (a) First, we observe that
participants’ self-reported emotions vary across positive and
non-positive pedestrian crossing actions (Figure 2). Positive,
non-verbal actions (as shown in the videos) elicit higher
valence ratings, whereas non-positive actions (as shown in
the videos) elicit higher excitement. (b) We observe that
physiological signals (IBI, mean PD, and GSR) vary signifi-
cantly for positive versus non-positive pedestrian actions
(Figure 3). Furthermore, different levels of valence (positive,
non-positive) are influenced by pedestrian action types
(positive, non-positive) for IBI and GSR signals; while differ-
ent levels of arousal (high, non-high) are influenced by ped-
estrian action type (positive, non-positive) for all signals. (c)
Similarly, we find variation in facial temperatures across dif-
ferent emotion self-reports. Median values observed at dif-
ferent ROIs (face, mouth, nose, cheeks) of the thermal
images are found to vary significantly between different
types of actions and valence and arousal self-reports.

Motivated by the results from our exploratory study, we
next designed a hybrid study encompassing real world
pedestrians and a driving simulator to observe affective
responses of drivers toward non-verbal pedestrian crossing
actions. Our analysis showed significant influence of non-
verbal, pedestrian crossing actions on drivers self-reported
emotion scores, physiological responses, and facial expres-
sions: (a) Participants’ valence self-reports vary significantly
across positive, non-positive and no-action pairs, and

participants’ arousal self-reports vary across positive and no-
action and, non-positive and no-action type pairs
(Figure 13). Particularly, we found that participants’
reported higher valence scores upon observing positive,
non-verbal crossing actions and lower valence scores for
non-positive, crossing actions. (b) Participants’ skin con-
ductance (GSR), heart data (IBI, BVP and BPM), pupil
diameter (mean PD) showed no significant variance in
standard deviation across different non-verbal pedestrian
crossing action types. However, when grouped by positive
and non-positive levels of self-reported valence scores, we
find that participants skin conductance (GSR), IBI and BPM
vary significantly (Figure 14). Likewise, IBI, BPM and pupil
diameter (mean PD) were found to vary significantly across
high and non-high levels of arousal (Figure 15). (c) Facial
landmarks analysis revealed significant variation in the
standard deviation of dispersion of facial landmarks upon
observing positive, non-positive and no-action types (Figure
15). Facial action units (FAUs) analysis revealed significant
changes in participants’ eyelid movements (lid raising, tight-
ening and blinking), nose wrinkling, chin raising, and lips
movements (pulling, stretching and tightening) upon observ-
ing positive actions (c.f., Table A1). Next, participants’ eye-
brows (inner and outer eyebrow raising), eyelids (lid raising,
tightening and blinking), cheeks (raising and dimpling),
nose wrinkling, chin raising, jaw dropping and lip move-
ments (pulling, stretching, tightening, and parting) all
changed significantly upon observing non-positive pedes-
trian actions (c.f., Table A2). Moreover, participants’ eye-
brows and lips also changed significantly in trials where no
pedestrians crossed the road (c.f., Table A3). These could be
attributed to stray expressions arising from not observing a
pedestrian cross the road. Finally, (d) Driving behavior ana-
lysis showed no significant influence of the different types of
pedestrian actions on the driving speed and braking behav-
ior during trials.

7.2. Implications

Results from our two studies have implications for auto-
matic, in-vehicle driver emotion detection and recognition

Figure 17. Comparing trial-wise driving behavior parameters across action types—(a) mean velocity (for trials) across action types and (b) mean braking across
action types.
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that use machine learning models to infer driver emotion
states using behavioral and bio-physiological signals.

First, our studies contribute a set of affect inducing stim-
uli in the form of videos and enacted road crossing actions.
Our in-lab study validated the suitability of the selected 10
JAAD videos (Ghosh et al., 2022), and our hybrid study
demonstrated the effectiveness of enacted, non-verbal road
crossing actions. These two types of stimuli (video and
enacted) can be used across future studies for eliciting driver
affect. Furthermore, our novel hybrid simulator setup dem-
onstrated suitability in capturing participants’ affective
responses to pedestrian crossing actions, and can serve as an
extensible platform for future experimentation through the
inclusion of additional sensors. Second, our studies enabled
identifying suitable driver affective cues (IBI, GSR, mean
PD, and facial expressions) and how they pertain to driver-
pedestrian interactions, which can aid researchers in select-
ing the appropriate sensing modality for detecting emotion
signals related to non-verbal, pedestrian crossing actions.
The hybrid driving study analysis particularly demonstrated
that facial expressions varied significantly based on the
observed positive and non-positive pedestrian actions. Non-
positive interactions in particular generated the most
changes in facial attributes of drivers. These cues can facili-
tate the development of (supervised) machine learning mod-
els for automatic emotion recognition and subsequent
emotion-regulation.

Third, both studies also demonstrated the influence of
non-positive, pedestrian crossing actions on participants.
Participants reported higher arousal upon viewing non-posi-
tive road crossing videos in the first lab study, and also
showed significant changes in facial expressions upon
observing enacted non-positive road crossing actions in the
hybrid study. These pedestrian crossing actions can thereby
aid in identification of potential on-road factors that may
elicit risky driving behavior (Braun et al., 2022; Sani et al.,
2017), which has implications for ensuring driver safety.

7.2.1. Toward just-in-time interventions using physio-
logical and camera sensors for emotion regulation
We observed significant variation in participants’ physio-
logical signals and facial expressions upon observing pedes-
trian crossing actions (both in videos and enacted).
However, the extent to which such signals are robust
enough to provide just-in-time interventions, necessary for
an empathic vehicle that can facilitate drivers to self-regulate
their emotion in-situ remains an open question (Braun
et al., 2022). Our results provide a first step toward the
development of machine learning models that can leverage
such physiological signals and facial cues for automatic emo-
tion recognition. In a self-regulation context, this can
become a binary classification task (e.g., real-time stress
detection (Healey & Picard, 2005)) during encounters with
such pedestrian actions, which can aid subsequent emotion-
regulation.

Furthermore, in a real-world driving context, expecting
drivers to provide self-reports across different intervals is
impractical. While our study necessitated the need for

establishing a ground truth to investigate if such effects exist
in the first place, real-world contexts would benefit from
considering other sensing modalities, including camera-
based sensors, positioning sensors (e.g., GPS), mapping data
[e.g., open street maps (Haklay & Weber, 2008)], and driv-
ing characteristics (e.g., average speed, road type, CAN bus
data, etc.) (Koch et al., 2021). Cameras in the vehicle allow
detecting not only driver facial expressions (which can sup-
port the task of automatically identifying in situ emotion
expressions), but may also be used for remote physiological
marker detection [using, e.g., remote Photoplethyography
(rPPG) (Wu et al., 2017) to automatically estimate heart
rate]. To circumvent the need for widely annotated datasets
and extract useful end-to-end features, self-supervised fea-
ture learning techniques (Sarkar & Etemad, 2020) can be
leveraged to make predictions based on the current physio-
logical state of a driver, given the traffic encounter they find
themselves in. The specific context of pedestrian crossings
would be inferred using a combination of positioning and
mapping data. However, physiological signals, such as GSR
require contact-based wearable sensors, and in-situ facial
expressions analysis require placement of cameras that may
be found invasive and obtrusive. These factor may limit the
scaling of our approach, and therefore needs greater consid-
eration in terms of real-world feasibility.

Lastly, we caution that our findings do not necessarily
factor in all societal and cultural aspects. In developed
nations, driver-pedestrian interactions are structured and
driven by traffic laws, such as yielding at a pedestrian cross-
ing (Arhin et al., 2022). However, this may differ across
other countries and cultures where the traffic laws are less
structured and/or followed (Ranasinghe et al., 2020; Weber
et al., 2019). For example, crossing a road at places other
than the designated crosswalks (so-called “jaywalking”) can
commonly occur in certain countries (e.g., South Asia)
(Ranasinghe et al., 2020). This can result in variation in the
affective response of the driver based on the condition
where she is used to driving. Therefore, while just-in-time
emotion regulation is necessary to ensure driver safety dur-
ing such interactions, we believe it is essential to consider
the cultural and societal aspects for actual deployment of
such technology.

7.3. Limitations and future work

There were three challenges that emerged from our studies:
First, our studies lack ecological validity as they were con-
ducted in controlled, laboratory setups with limited, con-
trolled driver-pedestrian interactions unlike real world
scenarios (e.g., multiple pedestrians concurrently crossing,
unpredictable pedestrian behaviors, etc.) This was particu-
larly noted in the hybrid simulator whereby we saw no clear
differences between participants’ low and high arousal states
resulting from positive and non-positive actions. This was
further visible in participants’ physiological signals, which
also showed no significant differences (Shi et al., 2007;
Wang et al., 2018). Likewise, while driving conditions of
urgency and visibility are known to impact driver emotions
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and risky driving (Chou et al., 2007; Meg�ıas et al., 2011), we
did not find any significant differences in the hybrid simula-
tor study. Moreover, such differences were also not reflected
in the driving behaviors analysis, which showed no signifi-
cant changes in mean velocity and braking. These results
could be attributed to the in-lab, controlled nature of the
experiment, where driving in a simulator may not have been
realistic enough to impart a true sense of urgency and risk
traits typically associated with such driving conditions.

Second, the nature of the stimuli (videos and enacted
actions) across both studies was unlike real-world driving
scenarios. Watching videos of pedestrian road crossing
actions may not be considered representative of real-world
driver-pedestrian interactions. Moreover, our hybrid simula-
tor study with real-world pedestrian confederates involved a
single pedestrian crossing, and them performing a fixed set
of non-verbal actions which required extensive training
beforehand. This is unlike real-world scenarios that include
unpredictable pedestrian behavior, on-road obstructions,
and erratic (depending on the city) weather and traffic con-
ditions. However, as an initial step toward understanding
driver-pedestrian interactions using multimodal data, exam-
ining a single pedestrian crossing and performing an action
was required for isolating the impact of the types of pedes-
trian actions on different driver affective states. To this end,
future work could extend this hybrid setup framework by
including a greater diversity of pedestrian actions, and fur-
ther diversifying and increasing the number of acting pedes-
trian confederates.

Lastly, while we showed that self-reported valence and
arousal levels vary according to positive and non-positive
actions observed (both in videos and enacted), we cannot
make further inferences regarding the exact emotions drivers
may experience in real world. For example, inferring that
low valence and high arousal relates to general aggressive
driving (cf., Sani et al., 2017) versus a specific situation that
elicited such states, would be erroneous. Such inferences
would require considering other sensed data, including scene
understanding, driving characteristics (e.g., from CAN bus
data), and positioning and mapping data. Nevertheless, even
with a combined sensing approach, we believe that for any
automated emotion regulation intervention stemming from
an empathic car, the interaction may still require a final
verification from the user to avoid any false positives, which
subsequently helps build more robust self-report emotion
annotations.

8. Conclusion

Inferring driver affective states during non-verbal driver-
pedestrian interactions is key for developing empathic,
in-car interfaces. This is especially so given that positive,
implicit communication between drivers and pedestrians are
known to influence driving behavior. In our exploratory
work, we investigated the impact of non-verbal, pedestrian
crossing actions on drivers’ affective states by means of two
controlled, in-lab studies. We first observed the impact of
pedestrian non-verbal crossing action videos from the JAAD

dataset on participants’ (N¼ 21) affective states (emotion
self-reports, physiological responses and facial temperatures).
We then investigated the variation in drivers’(N¼ 24) affect-
ive responses (emotion self-reports, physiological responses,
and facial landmarks) with respect to enacted pedestrian
crossing actions in a hybrid driving simulator setup. Both
studies revealed the influence of pedestrian non-verbal
crossing actions (presented as video stimuli and enacted by
confederates) on participants’ valence and arousal self-
reports. Participants’ reported higher valence scores upon
observing positive, non-verbal crossing actions and lower
valence scores for non-positive, crossing actions. Moreover,
participants reported higher arousal from watching positive
and non-positive pedestrian crossing action videos, with
changes in participants’ mean pupil diameter (mean PD),
skin conductance (GSR) and facial temperatures (across
face, mouth, nose, and cheeks). Additionally drivers’ facial
landmarks (eyelid, cheeks, nose, and lip movements) were
significantly affected upon observing enacted pedestrian
actions. Our combined studies empirically validate a suitable
set of pedestrian non-verbal crossing actions, first depicted
in video stimuli and then enacted by pedestrians. As a
result, our work provides the basis for developing automatic,
in-car empathic interfaces for helping regulate driver-pedes-
trian affective interactions. We furthermore introduced a
novel hybrid setup to capture driver affective states based on
non-verbal pedestrian crossing actions can aid in the devel-
opment of in-vehicle empathic interfaces. These interfaces
may be used in conjunction with real-time emotion recogni-
tion systems that can infer drivers’ affective states (based on
observed pedestrian actions), which can support “just-in-
time” driver emotion regulation for improved road safety.

Notes

1. https://www.theguardian.com/business/2018/jan/23/a-car-
which-detects-emotions-how-driving-one-made-us-feel

2. https://www.irishtimes.com/business/transport-and-
tourism/researchers-developing-empathic-car-technology-1.
3900701

3. https://www.flir.eu/support/products/duo-pro-r/
4. https://www.empatica.com/en-gb/research/e4/
5. https://pupil-labs.com/products/core/
6. For effect size f¼ 0.25 under a¼ 0.05 and power (1-

b)¼ 0.95, with 10 repeated measurements within factors,
we need 20 participants.

7. https://support.empatica.com/hc/en-us/articles/
360030058011-E4-data-IBI-expected-signal

8. We have the same finding for mean PD and GSR changes.
9. https://www.unrealengine.com/en-US/
10. https://github.com/microsoft/AirSim
11. For effect size f¼ 0.25 under a¼ 0.05 and power (1-

b)¼ 0.95, with 32 measurements within factors, we need
10 participants.

12. https://support.empatica.com/hc/en-us/articles/
360030058011-E4-data-IBI-expected-signal

13. https://github.com/microsoft/AirSim

Disclosure statement

No potential conflict of interest was reported by the author(s).

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3231

https://www.theguardian.com/business/2018/jan/23/a-car-which-detects-emotions-how-driving-one-made-us-feel
https://www.theguardian.com/business/2018/jan/23/a-car-which-detects-emotions-how-driving-one-made-us-feel
https://www.irishtimes.com/business/transport-and-tourism/researchers-developing-empathic-car-technology-1.3900701
https://www.irishtimes.com/business/transport-and-tourism/researchers-developing-empathic-car-technology-1.3900701
https://www.irishtimes.com/business/transport-and-tourism/researchers-developing-empathic-car-technology-1.3900701
https://www.flir.eu/support/products/duo-pro-r/
https://www.empatica.com/en-gb/research/e4/
https://pupil-labs.com/products/core/
https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
https://www.unrealengine.com/en-US/
https://github.com/microsoft/AirSim
https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
https://github.com/microsoft/AirSim


ORCID

Shruti Rao http://orcid.org/0000-0002-9093-3546
Surjya Ghosh http://orcid.org/0000-0002-0226-0733
Gerard Pons Rodriguez http://orcid.org/0000-0001-7671-2547
Thomas R€oggla http://orcid.org/0000-0002-6846-3656
Pablo Cesar http://orcid.org/0000-0003-1752-6837
Abdallah El Ali http://orcid.org/0000-0002-9954-4088

References

Arhin, S. A., Gatiba, A., Anderson, M., Manandhar, B., Ribbisso, M., &
Acheampong, E. (2022). Effectiveness of modified pedestrian cross-
ing signs in an urban area. Journal of Traffic and Transportation
Engineering (English Edition), 9(1), 21–32. https://doi.org/10.1016/j.
jtte.2021.04.001

Balconi, M., & Bortolotti, A. (2012). Empathy in cooperative versus
non-cooperative situations: The contribution of self-report measures
and autonomic responses. Applied Psychophysiology and Biofeedback,
37(3), 161–169. https://doi.org/10.1007/s10484-012-9188-z

Barrett, L. F. (2017). The theory of constructed emotion: An active
inference account of interoception and categorization. Social
Cognitive and Affective Neuroscience, 12(11), 1833–1833. https://doi.
org/10.1093/scan/nsx060

Bazilinskyy, P., Kooijman, L., Dodou, D., Mallant, K., Roosens, V.,
Middelweerd, M., Overbeek, L., & de Winter, J. (2022). Get out of
the way! Examining eHMIs in critical driver-pedestrian encounters
in a coupled simulator. In Proceedings of the 14th International
Conference on Automotive User Interfaces and Interactive Vehicular
Applications (pp. 360–371). https://doi.org/10.1145/3543174.3546849

Bethge, D., Kosch, T., Grosse-Puppendahl, T., Chuang, L. L., Kari, M.,
Jagaciak, A., & Schmidt, A. (2021). Vemotion: Using driving context
for indirect emotion prediction in real-time. In The 34th Annual
ACM Symposium on User Interface Software and Technology (pp.
638–651). Virtual Event USA; ACM. https://doi.org/10.1145/
3472749.3474775

Bindsch€adel, J., Krems, I., & Kiesel, A. (2021). Interaction between
pedestrians and automated vehicles: Exploring a motion-based
approach for virtual reality experiments. Transportation Research
Part F: Traffic Psychology and Behaviour, 82, 316–332. https://doi.
org/10.1016/j.trf.2021.08.018

Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-
assessment manikin and the semantic differential. Journal of
Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. https://
doi.org/10.1016/0005-7916(94)90063-9

Braun, M., Schubert, J., Pfleging, B., & Alt, F. (2019). Improving driver
emotions with affective strategies. Multimodal Technologies and
Interaction, 3(1), 21. https://doi.org/10.3390/mti3010021

Braun, M., Weber, F., & Alt, F. (2022). Affective automotive user inter-
faces? Reviewing the state of driver affect research and emotion
regulation in the car. ACM Computing Surveys, 54(7), 1–26. https://
doi.org/10.1145/3460938

Chou, K.-L., Lee, T., & Ho, A. H. (2007). Does mood state change risk
taking tendency in older adults? Psychology and Aging, 22(2), 310–
318. https://doi.org/10.1037/0882-7974.22.2.310

Clark, E. A., Kessinger, J., Duncan, S. E., Bell, M. A., Lahne, J.,
Gallagher, D. L., & O’Keefe, S. F. (2020). The facial action coding
system for characterization of human affective response to consumer
product-based stimuli: A systematic review. Frontiers in Psychology,
11, 920. https://doi.org/10.3389/fpsyg.2020.00920

Dawson, M. E., Schell, A. M., & Filion, D. L. (2016). The electrodermal
system. In Handbook of psychophysiology (4th ed., pp. 217–
243). Cambridge University Press. https://doi.org/10.1017/
9781107415782.010

Ekman, P. (1992). An argument for basic emotions. Cognition and
Emotion, 6(3–4), 169–200. https://doi.org/10.1080/02699939208
411068

Ekman, P., & Friesen, W. V. (1978). Facial action coding system:
Investigator’s guide. Consulting Psychologists Press.

Fleureau, J., Guillotel, P., & Orlac, I. (2013). Affective benchmarking of
movies based on the physiological responses of a real audience. In
2013 Humaine Association Conference on Affective Computing and
Intelligent Interaction (pp. 73–78). IEEE.

Fox, A. S., Lapate, R. C., Shackman, A. J., & Davidson, R. J. (2018).
The nature of emotion: Fundamental questions. Oxford University
Press.

Ghosh, S., Pons Rodriguez, G., Rao, S., El Ali, A., & Cesar, P. (2022).
Exploring emotion responses toward pedestrian crossing actions for
designing in-vehicle empathic interfaces. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (pp. 1–6).
Association for Computing Machinery. https://doi.org/10.1145/
3491101.3519764

Golland, Y., Arzouan, Y., & Levit-Binnun, N. (2015). The mere co-
presence: Synchronization of autonomic signals and emotional
responses across co-present individuals not engaged in direct inter-
action. PLOS One, 10(5), e0125804. https://doi.org/10.1371/journal.
pone.0125804

Gueguen, N., Eyssartier, C., & Meineri, S. (2016). A pedestrian’s smile
and drivers’ behavior: When a smile increases careful driving.
Journal of Safety Research, 56, 83–88. https://doi.org/10.1016/j.jsr.
2015.12.005

Gu�eguen, N., Meineri, S., & Eyssartier, C. (2015). A pedestrian’s stare
and drivers’ stopping behavior: A field experiment at the pedestrian
crossing. Safety Science, 75, 87–89. https://doi.org/10.1016/j.ssci.2015.
01.018

Habibovic, A., Lundgren, V. M., Andersson, J., Klingegård, M.,
Lagstr€om, T., Sirkka, A., Fagerl€onn, J., Edgren, C., Fredriksson, R.,
Krupenia, S., Salu€a€ar, D., & Larsson, P. (2018). Communicating
intent of automated vehicles to pedestrians. Frontiers in Psychology,
9, 1336. https://doi.org/10.3389/fpsyg.2018.01336

Haklay, M. M., & Weber, P. (2008). Openstreetmap: User-generated
street maps. IEEE Pervasive Computing, 7(4), 12–18. https://doi.org/
10.1109/MPRV.2008.80

Healey, J., & Picard, R. (2005). Detecting stress during real-world driv-
ing tasks using physiological sensors. IEEE Transactions on
Intelligent Transportation Systems, 6(2), 156–166. https://doi.org/10.
1109/TITS.2005.848368

Heilbron, F. C., & Niebles, J. C. (2014). Collecting and annotating
human activities in web videos. In Proceedings of International
Conference on Multimedia Retrieval (pp. 377–384). Association for
Computing Machinery. https://doi.org/10.1145/2578726.2578775

Helm, J. L., Sbarra, D., & Ferrer, E. (2012). Assessing cross-partner
associations in physiological responses via coupled oscillator models.
Emotion, 12(4), 748–762. https://doi.org/10.1037/a0025036

Hoch, S., Althoff, F., McGlaun, G., & Rigoll, G. (2005). Bimodal
fusion of emotional data in an automotive environment. In
Proceedings.(ICASSP’05). IEEE international conference on acoustics,
speech, and signal processing, 2005 (Vol. 2, pp. ii–1085). IEEE.

Hu, H., Zhu, Z., Gao, Z., & Zheng, R. (2018). Analysis on biosignal
characteristics to evaluate road rage of younger drivers: A driving
simulator study. In 2018 IEEE Intelligent Vehicles Symposium (IV)
(pp. 156–161). https://doi.org/10.1109/IVS.2018.8500444

Ihme, K., D€omeland, C., Freese, M., & Jipp, M. (2018). Frustration in
the face of the driver: A simulator study on facial muscle activity
during frustrated driving. Interaction Studies, 19(3), 487–498.
https://doi.org/10.1075/is.17005.ihm

Ihme, K., Unni, A., Zhang, M., Rieger, J. W., & Jipp, M. (2018).
Recognizing frustration of drivers from face video recordings and
brain activation measurements with functional near-infrared spec-
troscopy. Frontiers in Human Neuroscience, 12, 327. https://doi.org/
10.3389/fnhum.2018.00327

Jeon, M. (2015). Towards affect-integrated driving behaviour research.
Theoretical Issues in Ergonomics Science, 16(6), 553–585. https://doi.
org/10.1080/1463922X.2015.1067934

Jeon, M. (2016). Don’t cry while you’re driving: Sad driving is as bad
as angry driving. International Journal of Human–Computer
Interaction, 32(10), 777–790. https://doi.org/10.1080/10447318.2016.
1198524

3232 S. RAO ET AL.

https://doi.org/10.1016/j.jtte.2021.04.001
https://doi.org/10.1016/j.jtte.2021.04.001
https://doi.org/10.1007/s10484-012-9188-z
https://doi.org/10.1093/scan/nsx060
https://doi.org/10.1093/scan/nsx060
https://doi.org/10.1145/3543174.3546849
https://doi.org/10.1145/3472749.3474775
https://doi.org/10.1145/3472749.3474775
https://doi.org/10.1016/j.trf.2021.08.018
https://doi.org/10.1016/j.trf.2021.08.018
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.3390/mti3010021
https://doi.org/10.1145/3460938
https://doi.org/10.1145/3460938
https://doi.org/10.1037/0882-7974.22.2.310
https://doi.org/10.3389/fpsyg.2020.00920
https://doi.org/10.1017/9781107415782.010
https://doi.org/10.1017/9781107415782.010
https://doi.org/10.1080/02699939208411068
https://doi.org/10.1080/02699939208411068
https://doi.org/10.1145/3491101.3519764
https://doi.org/10.1145/3491101.3519764
https://doi.org/10.1371/journal.pone.0125804
https://doi.org/10.1371/journal.pone.0125804
https://doi.org/10.1016/j.jsr.2015.12.005
https://doi.org/10.1016/j.jsr.2015.12.005
https://doi.org/10.1016/j.ssci.2015.01.018
https://doi.org/10.1016/j.ssci.2015.01.018
https://doi.org/10.3389/fpsyg.2018.01336
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/TITS.2005.848368
https://doi.org/10.1109/TITS.2005.848368
https://doi.org/10.1145/2578726.2578775
https://doi.org/10.1037/a0025036
https://doi.org/10.1109/IVS.2018.8500444
https://doi.org/10.1075/is.17005.ihm
https://doi.org/10.3389/fnhum.2018.00327
https://doi.org/10.3389/fnhum.2018.00327
https://doi.org/10.1080/1463922X.2015.1067934
https://doi.org/10.1080/1463922X.2015.1067934
https://doi.org/10.1080/10447318.2016.1198524
https://doi.org/10.1080/10447318.2016.1198524


Jeon, M., Yim, J.-B., & Walker, B. N. (2011). An angry driver is not
the same as a fearful driver: Effects of specific negative emotions on
risk perception, driving performance, and workload. In Proceedings
of the 3rd International Conference on Automotive User Interfaces
and Interactive Vehicular Applications (pp. 137–142). ACM.

Koch, K., Mishra, V., Liu, S., Berger, T., Fleisch, E., Kotz, D., &
Wortmann, F. (2021). When do drivers interact with in-vehicle
well-being interventions? An exploratory analysis of a longitudinal
study on public roads. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 5(1), 1–30. https://
doi.org/10.1145/3448116

Kooij, J. F. P., Schneider, N., Flohr, F., & Gavrila, D. M. (2014).
Context-based pedestrian path prediction. In European Conference
on Computer Vision (pp. 618–633). LNCS.

Kotseruba, I., Rasouli, A., & Tsotsos, J. K. (2016). Joint attention
in autonomous driving (JAAD). arXiv preprint arXiv160904741, 264–269.

Likas, A., Vlassis, N., & Verbeek, J. J. (2003). The global k-means clus-
tering algorithm. Pattern Recognition, 36(2), 451–461. https://doi.
org/10.1016/S0031-3203(02)00060-2

Lutz, A., Brefczynski-Lewis, J., Johnstone, T., & Davidson, R. J. (2008).
Regulation of the neural circuitry of emotion by compassion medita-
tion: Effects of meditative expertise. PLOS One, 3(3), e1897. https://
doi.org/10.1371/journal.pone.0001897

Ma, Z., Mahmoud, M., Robinson, P., Dias, E., & Skrypchuk, L. (2017).
Automatic detection of a driver’s complex mental states. In
International Conference on Computational Science and Its
Applications (pp. 678–691). Springer.

Maga~na, V. C., Scherz, W. D., Seepold, R., Madrid, N. M., Pa~neda, X. G.,
& Garcia, R. (2020). The effects of the driver’s mental state and pas-
senger compartment conditions on driving performance and driving
stress. Sensors, 20(18), 5274. https://doi.org/10.3390/s20185274

Mahadevan, K., Somanath, S., & Sharlin, E. (2018). Communicating
awareness and intent in autonomous vehicle-pedestrian interaction.
In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (p. 429). Associated Computing Machinery.

Malta, L., Angkititrakul, P., Miyajima, C., & Takeda, K. (2008). Multi-
modal real-world driving data collection, transcription, and integra-
tion using bayesian network. In 2008 IEEE intelligent vehicles
symposium (pp. 150–155). ACM.

Masip, D., North, M. S., Todorov, A., & Osherson, D. N. (2014).
Automated prediction of preferences using facial expressions. PLOS
One, 9(2), e87434. https://doi.org/10.1371/journal.pone.0087434

Meg�ıas, A., Maldonado, A., C�andido, A., & Catena, A. (2011).
Emotional modulation of urgent and evaluative behaviors in risky
driving scenarios. Accident; Analysis and Prevention, 43(3), 813–817.
https://doi.org/10.1016/j.aap.2010.10.029

Mehrabian, A. (1996). Pleasure-arousal-dominance: A general frame-
work for describing and measuring individual differences in tem-
perament. Current Psychology, 14(4), 261–292. https://doi.org/10.
1007/BF02686918

Mesken, J., Hagenzieker, M. P., Rothengatter, T., & de Waard, D. (2007).
Frequency, determinants, and consequences of different drivers’ emo-
tions: An on-the-road study using self-reports,(observed) behaviour,
and physiology. Transportation Research Part F: Traffic Psychology and
Behaviour, 10(6), 458–475. https://doi.org/10.1016/j.trf.2007.05.001

Munla, N., Khalil, M., Shahin, A., & Mourad, A. (2015). Driver stress
level detection using HRV analysis. In 2015 International Conference
on Advances in Biomedical Engineering (ICABME) (pp. 61–64).
IEEE. https://doi.org/10.1109/ICABME.2015.7323251

Nason, G. P., & Silverman, B. W. (1995). The stationary wavelet trans-
form and some statistical applications. In Wavelets and statistics (pp.
281–299). Springer.

Nathanael, D., Portouli, E., Papakostopoulos, V., Gkikas, K., Amditis,
A. (2018). Naturalistic observation of interactions between car driv-
ers and pedestrians in high density urban settings. In Congress of
the International Ergonomics Association (pp. 389–397).

Paschero, M., Del Vescovo, G., Benucci, L., Rizzi, A., Santello, M.,
Fabbri, G., Mascioli, F. F. (2012). A real time classifier for emotion
and stress recognition in a vehicle driver. In 2012 IEEE International
Symposium on Industrial Electronics (pp. 1690–1695). IEEE.

Pfleging, B., Fekety, D. K., Schmidt, A., & Kun, A. L. (2016). A model
relating pupil diameter to mental workload and lighting conditions.
In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (pp. 5776–5788). ACM. https://doi.org/10.1145/
2858036.2858117

Picard, R. W. (2000). Affective computing. MIT Press.
Plutchik, R. (2001). The nature of emotions: Human emotions have

deep evolutionary roots, a fact that may explain their complexity
and provide tools for clinical practice. American Scientist, 89(4),
344–350. https://doi.org/10.1511/2001.28.344

Ranasinghe, C., Holl€ander, K., Currano, R., Sirkin, D., Moore, D.,
Schneegass, S., & Ju, W. (2020). Autonomous vehicle-pedestrian
interaction across cultures: Towards designing better external human
machine interfaces (eHMIs). In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems (pp. 1–8).
https://doi.org/10.1145/3334480.3382957

Ranganathan, P., Pramesh, C., & Aggarwal, R. (2017). Common pitfalls
in statistical analysis: Measures of agreement. Perspectives in Clinical
Research, 8(4), 187–191. https://doi.org/10.4103/picr.PICR_123_17

Rao, S., Ghosh, S., Pons Rodriguez, G., R€oggla, T., El Ali, A., & Cesar,
P. (2022). Investigating affective responses toward in-video pedes-
trian crossing actions using camera and physiological sensors. In
Proceedings of the 14th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications (pp. 226–235).
https://doi.org/10.1145/3543174.3546842

Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2017a). Agreeing to cross:
How drivers and pedestrians communicate. In 2017 IEEE Intelligent
Vehicles Symposium (IV) (pp. 264–269). IEEE. https://doi.org/10.
1109/IVS.2017.7995730

Rasouli, A., Kotseruba, I., & Tsotsos, J. K. (2017b). Are they going to
cross? a benchmark dataset and baseline for pedestrian crosswalk
behavior. In Proceedings of the IEEE International Conference on
Computer Vision (pp. 206–213). IEEE.

Ren, Z., Jiang, X., & Wang, W. (2016). Analysis of the influence of
pedestrians’ eye contact on drivers’ comfort boundary during the
crossing conflict. Procedia Engineering, 137, 399–406. https://doi.org/
10.1016/j.proeng.2016.01.274

Rigas, G., Goletsis, Y., & Fotiadis, D. I. (2012). Real-time driver’s stress
event detection. IEEE Transactions on Intelligent Transportation
Systems, 13(1), 221–234. https://doi.org/10.1109/TITS.2011.2168215

Risto, M., Emmenegger, C., Vinkhuyzen, E., Cefkin, M., & Hollan, J.
(2017). Human-vehicle interfaces: The power of vehicle movement
gestures in human road user coordination. In Proceedings of the
Ninth International Driving Symposium on Human Factors in Driver
Assessment, Training, and Vehicle Design (pp. 411–420). National
Advanced Driving Simulator. https://doi.org/10.17077/drivingassess-
ment.1633

Roidl, E., Frehse, B., & H€oger, R. (2014). Emotional states of drivers
and the impact on speed, acceleration and traffic violations—A
simulator study. Accident; Analysis and Prevention, 70, 282–292.
https://doi.org/10.1016/j.aap.2014.04.010

Russell, J. A. (1980). A circumplex model of affect. Journal of
Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/
10.1037/h0077714

Sani, S. R. H., Tabibi, Z., Fadardi, J. S., & Stavrinos, D. (2017).
Aggression, emotional self-regulation, attentional bias, and cognitive
inhibition predict risky driving behavior. Accident; Analysis and
Prevention, 109(190), 78–88. https://doi.org/10.1016/j.aap.2017.10.006

Sarkar, P., & Etemad, A. (2020). Self-supervised learning for ECG-
based emotion recognition. In ICASSP 2020 – 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 3217–3221). IEEE. https://doi.org/10.1109/
ICASSP40776.2020.9053985

Schmidt, S., & F€arber, B. (2009). Pedestrians at the kerb–recognising
the action intentions of humans. Transportation Research Part F:
Traffic Psychology and Behaviour, 12(4), 300–310. https://doi.org/10.
1016/j.trf.2009.02.003

Schmidt-Daffy, M. (2012). Velocity versus safety: Impact of goal con-
flict and task difficulty on drivers’ behaviour, feelings of anxiety,
and electrodermal responses. Transportation Research Part F: Traffic

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3233

https://doi.org/10.1145/3448116
https://doi.org/10.1145/3448116
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1371/journal.pone.0001897
https://doi.org/10.1371/journal.pone.0001897
https://doi.org/10.3390/s20185274
https://doi.org/10.1371/journal.pone.0087434
https://doi.org/10.1016/j.aap.2010.10.029
https://doi.org/10.1007/BF02686918
https://doi.org/10.1007/BF02686918
https://doi.org/10.1016/j.trf.2007.05.001
https://doi.org/10.1109/ICABME.2015.7323251
https://doi.org/10.1145/2858036.2858117
https://doi.org/10.1145/2858036.2858117
https://doi.org/10.1511/2001.28.344
https://doi.org/10.1145/3334480.3382957
https://doi.org/10.4103/picr.PICR_123_17
https://doi.org/10.1145/3543174.3546842
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1109/IVS.2017.7995730
https://doi.org/10.1016/j.proeng.2016.01.274
https://doi.org/10.1016/j.proeng.2016.01.274
https://doi.org/10.1109/TITS.2011.2168215
https://doi.org/10.17077/drivingassessment.1633
https://doi.org/10.17077/drivingassessment.1633
https://doi.org/10.1016/j.aap.2014.04.010
https://doi.org/10.1037/h0077714
https://doi.org/10.1037/h0077714
https://doi.org/10.1016/j.aap.2017.10.006
https://doi.org/10.1109/ICASSP40776.2020.9053985
https://doi.org/10.1109/ICASSP40776.2020.9053985
https://doi.org/10.1016/j.trf.2009.02.003
https://doi.org/10.1016/j.trf.2009.02.003


Psychology and Behaviour, 15(3), 319–332. https://doi.org/10.1016/j.
trf.2012.02.004

Schneemann, F., & Gohl, I. (2016). Analyzing driver-pedestrian inter-
action at crosswalks: A contribution to autonomous driving in
urban environments. In 2016 IEEE Intelligent Vehicles Symposium
(IV) (pp. 38–43). https://doi.org/10.1109/IVS.2016.7535361

Schuller, B., Wimmer, M., Arsic, D., Moosmayr, T., & Rigoll, G.
(2008). Detection of security related affect and behaviour in passen-
ger transport. In Ninth annual conference of the international speech
communication association (p. 265–268). IEEE.

Schulz, A. T., & Stiefelhagen, R. (2015). Pedestrian intention recogni-
tion using latent-dynamic conditional random fields. In 2015 IEEE
Intelligent Vehicles Symposium (IV) (pp. 622–627). IEEE. https://doi.
org/10.1109/IVS.2015.7225754

Shi, Y., Ruiz, N., Taib, R., Choi, E., & Chen, F. (2007). Galvanic skin
response (GSR) as an index of cognitive load. In CHI ’07 Extended
Abstracts on Human Factors in Computing Systems (pp. 2651–2656).
Association for Computing Machinery. https://doi.org/10.1145/1240866.
1241057

Singh, R. R., Conjeti, S., & Banerjee, R. (2013). A comparative evaluation
of neural network classifiers for stress level analysis of automotive
drivers using physiological signals. Biomedical Signal Processing and
Control, 8(6), 740–754. https://doi.org/10.1016/j.bspc.2013.06.014

Sucha, M., Dostal, D., & Risser, R. (2017). Pedestrian-driver communi-
cation and decision strategies at marked crossings. Accident;
Analysis and Prevention, 102(107050), 41–50. https://doi.org/10.
1016/j.aap.2017.02.018

Taib, R., Tederry, J., & Itzstein, B. (2014). Quantifying driver frustra-
tion to improve road safety. In CHI’14 Extended Abstracts on
Human Factors in Computing Systems (pp. 1777–1782). ACM.
https://doi.org/10.1145/2559206.2581258

Vanutelli, M. E., Gatti, L., Angioletti, L., & Balconi, M. (2017).
Affective synchrony and autonomic coupling during cooperation: A
hyperscanning study. BioMed Research International, 2017(14), 1–9.
https://doi.org/10.1155/2017/3104564

Wang, C., & Cesar, P. (2017). The play is a hit: But how can you tell?
In Proceedings of the 2017 ACM SIGCHI Conference on Creativity
and Cognition (pp. 336–347). Association for Computing
Machinery. https://doi.org/10.1145/3059454.3059465

Wang, C.-A., Baird, T., Huang, J., Coutinho, J. D., Brien, D. C., &
Munoz, D. P. (2018). Arousal effects on pupil size, heart rate, and
skin conductance in an emotional face task. Frontiers in Neurology,
9, 1029. https://doi.org/10.3389/fneur.2018.01029

Wang, T., Wu, J., Zheng, P., & McDonald, M. (2010). Study of pedes-
trians’ gap acceptance behavior when they jaywalk outside crossing
facilities. In 13th International IEEE Conference on Intelligent
Transportation Systems (pp. 1295–1300). IEEE.

Wang, Y., Hespanhol, L., Worrall, S., & Tomitsch, M. (2022).
Pedestrian-vehicle interaction in shared space: Insights for autono-
mous vehicles. In Proceedings of the 14th International Conference
on Automotive User Interfaces and Interactive Vehicular Applications
(pp. 330–339). https://doi.org/10.1145/3543174.3546838

Weber, F., Chadowitz, R., Schmidt, K., Messerschmidt, J., Fuest, T.
(2019). Crossing the street across the globe: A study on the effects of
eHMI on pedestrians in the US, Germany and China. In International
Conference on Human–Computer Interaction (pp. 515–530).

Wu, B.-F., Chu, Y.-W., Huang, P.-W., Chung, M.-L., & Lin, T.-M. (2017).
A motion robust remote-PPG approach to driver’s health state monitor-
ing. In C.-S. Chen, J. Lu, & K.-K. Ma (Eds.), Computer Vision – ACCV
2016Workshops (pp. 463–476). Springer International Publishing.

Yang, S. (2017). Driver behavior impact on pedestrians’ crossing experi-
ence in the conditionally autonomous driving context.

Zadeh, A., Chong Lim, Y., Baltrusaitis, T., & Morency, L.-P. (2017).
Convolutional experts constrained local model for 3D facial land-
mark detection. In Proceedings of the IEEE International Conference
on Computer Vision Workshops (pp. 2519–2528).

Zepf, S., Dittrich, M., Hernandez, J., & Schmitt, A. (2019). Towards
empathetic car interfaces: Emotional triggers while driving. In
Extended Abstracts of the 2019 CHI Conference on Human Factors in
Computing Systems (pp. 1–6). ACM.

Zepf, S., Hernandez, J., Schmitt, A., Minker, W., & Picard, R. W. (2021).
Driver emotion recognition for intelligent vehicles: A.
ACM Computing Surveys, 53(3), 1–30. https://doi.org/10.1145/3388790

Zhao, Y., Miyahara, T., Mizuno, K., Ito, D., & Han, Y. (2021). Analysis
of car driver responses to avoid car-to-cyclist perpendicular colli-
sions based on drive recorder data and driving simulator experi-
ments. Accident; Analysis and Prevention, 150, 105862. https://doi.
org/10.1016/j.aap.2020.105862

Zhi, R., Liu, M., & Zhang, D. (2020). A comprehensive survey on auto-
matic facial action unit analysis. The Visual Computer, 36(5), 1067–
1093. https://doi.org/10.1007/s00371-019-01707-5

Zimasa, T., Jamson, S., & Henson, B. (2019). The influence of driver’s
mood on car following and glance behaviour: Using cognitive load as
an intervention. Transportation Research Part F: Traffic Psychology
and Behaviour, 66, 87–100. https://doi.org/10.1016/j.trf.2019.08.019

About the authors

Shruti Rao is a first year PhD candidate at the University of
Amsterdam with interests in Affective Computing, and HCI. Presently,
for her PhD, she is interested in designing smart, empathic buildings
that can understand and interact with occupants to enhance their expe-
riences of comfort and emotional well-being.

Surjya Ghosh is an assistant professor in the Department of Computer
Science and Information Systems at BITS Pilani K. K. Birla Goa. His
research interests lie in the areas of Human–Computer Interaction,
Applied AI, Affective Computing, and Computer Systems.

Gerard Pons Rodriguez is a Computer Vision and Machine Learning
Engineer at Bright River, Amsterdam. Prior to this, he worked as a
Postdoctoral Research Scientist at the Centrum Wiskunde &
Informatica (CWI) where he worked on affective computing and com-
puter vision.

Thomas R€oggla is a Scientific Software Developer at Centrum
Wiskunde & Informatica (CWI) with a degree in Distributed
Computing from VU Amsterdam. He has contributed to several EU-
funded research projects and worked with international project part-
ners from industry in fields, such as affective computing, human-cen-
tered media and technology-supported media production.

Pablo Cesar leads the Distributed & Interactive Systems (DIS: https://
www.dis.cwi.nl) Group at Centrum Wiskunde & Informatica (CWI)
and is Professor with TU Delft, The Netherlands. He has received the
prestigious 2020 Netherlands Prize for ICT Research because of his
work on human-centered multimedia systems. Website: https://www.
pablocesar.me

Abdallah El Ali is a research scientist in Human Computer
Interactions at Centrum Wiskunde & Informatica (CWI) in
Amsterdam, within the Distributed & Interactive Systems group. He
leads the research area on Affective Interactive Systems. He is also on
the executive board for CHI Nederland (https://chinederland.nl/).
Website: https://abdoelali.com

3234 S. RAO ET AL.

https://doi.org/10.1016/j.trf.2012.02.004
https://doi.org/10.1016/j.trf.2012.02.004
https://doi.org/10.1109/IVS.2016.7535361
https://doi.org/10.1109/IVS.2015.7225754
https://doi.org/10.1109/IVS.2015.7225754
https://doi.org/10.1145/1240866.1241057
https://doi.org/10.1145/1240866.1241057
https://doi.org/10.1016/j.bspc.2013.06.014
https://doi.org/10.1016/j.aap.2017.02.018
https://doi.org/10.1016/j.aap.2017.02.018
https://doi.org/10.1145/2559206.2581258
https://doi.org/10.1155/2017/3104564
https://doi.org/10.1145/3059454.3059465
https://doi.org/10.3389/fneur.2018.01029
https://doi.org/10.1145/3543174.3546838
https://doi.org/10.1145/3388790
https://doi.org/10.1016/j.aap.2020.105862
https://doi.org/10.1016/j.aap.2020.105862
https://doi.org/10.1007/s00371-019-01707-5
https://doi.org/10.1016/j.trf.2019.08.019
https://www.dis.cwi.nl
https://www.dis.cwi.nl
https://www.pablocesar.me
https://www.pablocesar.me
https://chinederland.nl/
https://abdoelali.com


Table A1. Statistically significant results using Wilcoxon Signed Rank Test for changes in AUs of participants before and during positive pedestrian crossing
actions.

Positive actions

Action unit Action segment Std. median Std. IRQ W statistic Z statistic p-Value Effect size

AU 05 (upper lid raiser) Before 0.072 0.043 32.0 3.597 0.0003 0.52
During 0.136 0.067

AU 07 (lid tightener) Before 0.284 0.557 64.0 2.495 0.0126 0.36
During 0.384 0.489

AU 09 (nose wrinkler) Before 0.061 0.037 81.0 1.67 0.049 0.28
During 0.096 0.066

AU 12 (lip corner puller) Before 0.143 0.194 54.0 2.55 0.011 0.37
During 0.221 0.171

AU 17 (chin raiser) Before 0.285 0.171 60.0 2.62 0.009 0.38
During 0.356 0.185

AU 20 (lip stretcher) Before 0.111 0.058 11.0 4.51 6.556e-06 0.65
During 0.168 0.059

AU 23 (lip tightener) Before 0.13 0.108 21.0 4.041 5.329e-05 0.58
During 0.262 0.168

AU 45 (blink) Before 0.263 0.182 0.0 5.29 1.192e-07 0.76
During 0.405 0.2

Table A2. Statistically significant results using Wilcoxon Signed Rank Test for changes in AUs of participants before and during non-positive pedestrian crossing
actions.

Non-positive actions

Action unit Action segment Std. median Std. IRQ W statistic Z statistic p-Value Effect size

AU 01 (inner brow raiser) Before 0.186 0.126 79.0 2.03 0.04 0.293
During 0.196 0.152

AU 02 (outer brow raiser) Before 0.091 0.052 66.0 2.431 0.0150 0.35
During 0.125 0.085

AU 05 (upper lid raiser) Before 0.069 0.058 17.0 4.22 2.47e-05 0.61
During 0.14 0.072

AU 06 (cheek raiser) Before 0.152 0.16 44.0 3.16 0.0016 0.46
During 0.25 0.286

AU 07 (lid tightener) Before 0.264 0.368 43.0 2.89 0.004 0.42
During 0.451 0.364

AU 09 (nose wrinkler) Before 0.064 0.048 45.0 3.125 0.0012 0.45
During 0.117 0.076

AU 10 (upper lip raiser) Before 0.053 0.182 32.0 1.37 0.005 0.39
During 0.118 0.3

AU 12 (lip corner puller) Before 0.102 0.174 26.0 3.406 0.0016 0.49
During 0.205 0.266

AU 14 (dimpler) Before 0.259 0.332 52.0 2.89 0.004 0.42
During 0.395 0.34

AU 17 (chin raiser) Before 0.268 0.126 60.0 2.62 0.009 0.28
During 0.318 0.163

AU 20 (lip stretcher) Before 0.103 0.052 20.0 4.08 4.423e-05 0.59
During 0.167 0.084

AU 23 (lip tightener) Before 0.134 0.115 19.0 4.13 3.66e-05 0.6
During 0.206 0.212

AU 25 (lips part) Before 0.238 0.139 28.0 3.75 0.0002 0.54
During 0.329 0.17

AU 26 (jaw drop) Before 0.137 0.14 35.0 3.48 0.0005 0.50
During 0.371 0.217

AU 45 (blink) Before 0.256 0.117 6.0 4.79 1.669e-06 0.69
During 0.366 0.172

Appendix A. Study 2: Hybrid driving simulator facial expressions analysis

The following tables describe the statistically significant results from analysis of the facial action units described in Section 6.4.2.
Participant wearing the Pupil Labs eye tracker while watching video stimuli. (a) Thermal Camera and projection screen placement. (b) The

web-based user interface displays the video stimuli and records the participant’s valence and arousal ratings after each video (c).
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Table A3. Statistically significant results using Wilcoxon Signed Rank Test for changes in AUs of participants during no pedestrian crossing actions.

No action

Action unit Action segment Std. median Std. IRQ W-statistic Z-statistic p-Value Effect size

AU 01 (inner brow raiser) Before 0.127 0.109 78.0 2.06 0.039 0.3
During 0.114 0.084

AU 02 (outer brow raiser) Before 0.092 0.049 51.0 2.92 0.0035 0.42
During 0.344 0.104

AU 20 (lip stretcher) Before 0.092 0.04 65.0 2.46 0.014 0.35
During 0.121 0.092

AU 25 (lips part) Before 0.173 0.112 74.0 2.18 0.0291 0.31
During 0.214 0.163

AU 45 (blink) Before 0.254 0.144 33.0 3.56 0.001 0.51
During 0.359 0.185
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