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(a) Traditional ESM study (with no self-report estimation) (b) ESM study with MUSE (for missing self-report estimation)

Figure 1: Schematic diagram comparing the ESM study in traditional approach and with MUSE (for missing self-report
estimation). (a) In traditional approach of ESM study, the participants provide the emotion self-report over the study duration.
However if a participant (e.g., U3) drops out in between, the researcher (or experimenter) has no option but to discard the
self-reported data from the dropout participants. (b) On the contrary, in MUSE, if a participant (e.g., U3) drops in between
after recording data for a reasonable time, the framework can estimate the missing self-reports (using the MTL network of
MUSE) for the remaining days, thus assisting the researcher (or experimenter) to deal with the possible data loss and save from
rerunning the user study.

ABSTRACT
The Experience Sampling Method (ESM) is widely used to collect
emotion self-reports to train machine learning models for emotion
inference. However, as ESM studies are time-consuming and bur-
densome, participants often withdraw in between. This unplanned
withdrawal compels the researchers to discard the dropout partic-
ipants’ data, significantly impacting the quality and quantity of
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the self-reports. To address this problem, we leverage only the self-
reporting similarity across participants (unlike prior works that
apply different machine learning approaches on additional modali-
ties) for missing self-report estimation. In specific, we propose a
Multi-task Learning (MTL) framework, MUSE, that constructs the
missing self-reports of the dropout participants. We evaluate MUSE
in two in-the-wild studies (N1=24, N2=30) of 6-week and 8-week
duration, during which the participants reported four emotions
(happy, sad, stressed, relaxed) using a smartphone application. The
evaluation reveals that MUSE estimates the missing emotion self-
reports with an average AUCROC of 84% (Study I) and 82% (Study
II). A follow-up evaluation ofMUSE for an emotion inference (down-
stream) task reveals no significant difference in emotion inference
performance when estimated self-reports are used. These findings
underscore the utility of MUSE in estimating missing self-reports
in ESM studies and the applicability of MUSE for downstream tasks
(e.g., emotion inference).

https://doi.org/10.1145/3613904.3642833
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642833&domain=pdf&date_stamp=2024-05-11


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ghosh, et al.

CCS CONCEPTS
• Human-centered computing → User studies; • Computing
methodologies→ Multi-task learning.

KEYWORDS
Experience Sampling Method (ESM), Emotion self-report, Multi-
task learning

ACM Reference Format:
Surjya Ghosh, Salma Mandi, Sougata Sen, Bivas Mitra, and Pradipta De.
2024. Towards Estimating Missing Emotion Self-reports Leveraging User
Similarity: A Multi-task Learning Approach. In Proceedings of the CHI Con-
ference on Human Factors in Computing Systems (CHI ’24), May 11–16, 2024,
Honolulu, HI, USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.
1145/3613904.3642833

1 INTRODUCTION
In recent times, many emotion-aware applications (e.g., onlinemeet-
ing, gaming, affective tutoring) aim to improve the user experience
based on user emotion [23, 49]. These applications typically use a
machine learning model to infer the user emotion. However, the ma-
jor challenge to develop these machine learning models is to collate
the emotion ground truth labels that are generally collected as emo-
tion self-reports by performing a long-term user study, commonly
termed as the Experience Sampling Method (ESM) [35]. As the self-
reporting process is repetitive, burdensome, and time-consuming,
the users often drop out from the study in between [3, 48, 53]. This
unplanned dropout impacts the researchers (or study designers)
as they often need to discard the partial data collected from the
dropout users, which significantly deteriorate the quality and quan-
tity of the emotion self-reports. Therefore, efficient strategies to
counter this data loss are essential.

In the existing literature, broadly two types of approaches are
practised to address this issue. First, preventive - in this approach,
different types of rewards (or incentives) are provided to the users to
keep them engaged in long-term user studies. For example, provid-
ing one-time rewards (e.g., monetary, gift cards) [56, 84] at the end
of the study, or micro-incentives [50] during the study for making
small progress are commonly followed. Other form of rewards (e.g.,
community reward [16], leaderboard entry [32]) are also adopted
in various studies. However, researchers still face the challenge of
participants dropping out in between [67]. Therefore, a second type
of approach, (remedial) is adopted. In this approach, missing data
from users who withdrew from the study (dropout participants)
are constructed. For example, in ESM-based studies, peer-assisted
self-report collection strategies have been proposed, which collect
self-reports from a set of designated peers when self-reports from a
participant is not available [4, 10]. More recently, with advances in
machine learning methods, similarity among different but related
tasks are explored using a multi-task learning (MTL) framework [9]
to tackle such situations. The key idea of MTL is that if two or more
tasks are similar, then data among these tasks can be shared to
obtain better performance for the individual tasks [28]. This shar-
ing addresses the data scarcity issue for individual tasks. In ESM
study (for emotion self-report collection), the missing self-report
estimation of dropped out users can be considered a task so that
the data sharing among similar users (tasks) allows to estimate

the missing self-reports accurately. In the existing literature, re-
searchers have explored the MTL-based approaches that utilize the
sensor data to reduce the annotation effort for different applications
(e.g., HAR [31, 62]). Although effective, these approaches rely on
sensor data. However, a sensor stream may not be available for
a given ESM study [72], or it may have privacy issues [59], or it
may incur significant resource cost (e.g., GPS) [8]. To reduce this
dependency, we estimate the missing emotion self-reports by using
only the self-reporting characteristics of similar users.

Developing an MTL-based approach by sharing data among
similar users to construct the missing self-reports of dropout par-
ticipants poses multiple challenges. First, the amount of emotion
self-reports collected from a participant (before the participant
drops out from the study) is usually small in number. As a result, it
becomes challenging to train any model using the few self-reports.
Thus, it is essential to engage the participants for a reasonable pe-
riod during the study. Second, as the self-reports collected from
the dropout participants are limited in number (because they are
manually recorded, not automatically sampled from sensors), state-
of-the-art machine learning models may not be able to automati-
cally extract signatures that correlate well with the missing (to-be
estimated) self-reports.Therefore, it requires a rigorous engineering
effort to identify such properties. Finally, the emotion self-reports
are subjective, person-specific, and vary among individuals of dif-
ferent regions [6, 11, 46, 54]. Due to this variability in self-reporting
behavior, it becomes challenging to quantify the self-reporting pat-
terns and therefore identify the similar users based on self-reporting
characteristics.

We envision that while the challenges are significant, there are
a number of emotion self-reporting characteristics (among the
users participating in an ESM study) that can be leveraged to ad-
dress the challenges. First, as highlighted in earlier studies, a few
emotions are more frequently reported than others in an in-the-
wild study [19, 38]. Therefore, even within a reasonable amount
of emotion self-report dataset, the transition pattern among these
frequently occurring emotions become more prevalent. Second,
studies in psychology observed that different emotions persist for
different amounts of time, commonly termed as the persistence ef-
fect of emotion [17, 75]. As a result, if the persistence period of an
emotion is long, that emotion could recur repeatedly in the self-
report sequence. All these properties (emotion state transitions,
persistence period, and emotion recurrence) provide cues about
the self-reporting pattern of a user. For example, it may be possible
to observe sufficient amount self-report sequence of a user and
make an estimate about the future emotion self-reports. However,
as obtaining sufficient amount of data from an individual can be
challenging, data sharing among similar users can be explored.
Notably, all the aforementioned characteristics can be expressed
quantitatively (e.g., emotion transition patterns can be expressed
as transition probabilities, persistence period and emotion recur-
rence length can computed) to construct a user profile and used for
identifying the similar users in terms of the self-reporting behavior.

We, in this paper, propose a multi-task learning based emo-
tion self-report estimation framework, MUSE (Multi-task Learning
Framework for User Similarity based Emotion Self-report Estima-
tion), that estimates the missing self-reports from dropout par-
ticipants leveraging the aforementioned intuitions. It exploits the
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similarity in self-reporting behavior across participants and applies
a Neural Network (NN) based multi-task learning model for esti-
mating the emotion self-reports. In specific, MUSE (a) quantifies
the interaction characteristics of emotion self-reporting behavior
in terms of emotion state-transition probabilities, emotion persis-
tence times, and emotion recurrence length, and (b) allows the
framework to share knowledge among similar users based on the
self-reporting behavior to construct a self-report estimation model.
The quantification of self-reporting characteristics allows identi-
fying similar users and thus enabling the data sharing among the
similar users using the MTL framework. We train the MTL network
considering the self-report estimation of every user as a separate
task. This allows sharing data among similar users for a more effi-
cient learning, and reduces the individual user data requirement
for estimating the missing self-reports. We present the working
of MUSE in Fig. 1 using a schematic diagram. Unlike traditional
approach of an ESM study, where the researcher has to discard data
from a dropout participant, MUSE provides the flexibility that if
a participant has recorded the emotion self-reports for a reason-
able amount of time before dropping out, the missing self-reports
can still be constructed using the framework. This approach coun-
ters the data loss and saves the researcher’s effort from rerunning
another ESM study.

We performed two in-the-wild studies to evaluate the perfor-
mance of MUSE. We developed an Android application that allowed
capturing and storing the emotion self-reports of study participants.
We used the application as the experiment apparatus in both the
studies. The application sends self-report probes (multiple times a
day) to the participant to record one of the four emotions (happy,
sad, stressed, relaxed). As we sample instantaneous feeling, we are
capturing emotions. We selected these four discrete emotions (also
used in earlier works [20, 58]) as they represent each quadrant
of the Circumplex model [61] (i.e., having unique valence-arousal
representation and any discrete emotion and its unambiguous rep-
resentation on the valence-arousal plane are equivalent [43]). In
the first study (Section 3), we recruited 24 university students, who
participated in a 6-week data collection. The collected dataset from
this study is termed as the Homogeneous dataset (Section 3.3). The
analysis of the dataset reveals the similarity among the users in
terms of the emotion self-reporting behavior (i.e., emotion tran-
sition probabilities, persistence period, and the sequence length).
However, as the the profile homogeneity (all the study participants
were student) of the participants can act as a confounding, we per-
formed another study involving a diverse population. The second
study (Section 7) was performed involving 30 participants with
diverse profile (in terms of age, gender, geographic location, and
professional background) for 8 weeks. The dataset collected from
this study is termed as the Heterogeneous dataset (Section 7.2). The
evaluation of MUSE on these datasets reveals that MUSE can esti-
mate the missing self-reports with an average AUCROC of 84% (in
the Homogeneous dataset) and 82% (in the Heterogeneous dataset).
Finally, we evaluated MUSE on a downstream task (smartphone
keyboard based emotion inference), which reveals no significant
difference in emotion inference performance by using original or
estimated self-reports. In summary, the key contributions of this
paper are:

• We demonstrated that in an ESM study, the missing emotion self-
reports from the dropout participants can be constructed to ease
the data collection process (from the researcher’s perspective). To
achieve this, we propose a MTL framework, MUSE, that leverages
the similarity in self-reporting behavior across participants so
that the self-reports can be estimated reliably.

• We showed that self-reporting characteristics can be expressed
quantitatively in terms of emotion state transition probabilities,
persistence period, and emotion recurrence length. All of these
help identify similar users in terms of the self-reporting behavior.

• We presented the empirical findings from two in-the-wild stud-
ies to demonstrate that MUSE can leverage the quantitatively
expressed self-report behavior to estimate missing emotion self-
reports (happy, sad, stressed, relaxed) with an average AUCROC
of 84% and 82% on two different datasets (Homogeneous and
Heterogeneous respectively).

• We performed an in-the-wild user study to evaluate the utility of
MUSE for missing self-report estimation in context smartphone
keyboard interaction based emotion detection. The evaluation
based on the data collected from the user study reveals that there
is no significant difference in emotion detection performance if
missing self-reports are estimated (using MUSE) and used for
training the emotion inference model.

2 RELATEDWORKS
In this section, we discuss the related works with respect to en-
gaging participants in long-term ESM studies to obtain reliable
data from the study. We discuss the preventive approaches (to en-
gage the participants with various incentives) and the remedial
approaches (to construct the ground truth labels for dropout par-
ticipants). Within remedial approaches, we highlight the utility of
peer-assisted ESM and AI-based approaches for constructing the
annotations reliably.

2.1 Engaging Participants in ESM Studies with
Rewards

The emotion ground truths are usually collected as manual self-
reports in an Experience Sampling Method study [12, 24, 35]. How-
ever, as responding to the survey questionnaires over a long time
induces fatigue, causes interruption, and increases dropout rate, one
of the most common approaches adopted to engage the participants
over the study duration is to incentivize them. The most common
from of incentive provided to the participants is monetary rewards,
which has been adopted in many works [41, 42, 56, 84]. In a few
studies, micro-incentives were also adopted (instead of one-time
rewards), where the participants are rewarded throughout the study
for completing a small task [50]. To motivate the participants in
an ESM study and improve the data quality, other schemes like
community reward [16], leaderboard entry [32], day reconstruction
method [50], visualization of data [21, 27] are also practised. More
recently, gamification was also considered a possible avenue to keep
the participants engaged in long-term studies. The participants play
the mobile-based game and during this process the self-reports
are being automatically collected [73]. Despite the effectiveness
of these approaches, researchers noted that the participants may
dropout from the studies if they are not intrinsically motivated,
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which affects the quality and quantity of the collected data from
ESM study [67]. Therefore, to counter the data loss in ESM studies,
researchers considered the remedial approaches that we discuss
next.

2.2 Countering Missing Self-reports with
Peer-Assisted ESM

One of the recently developed approaches to deal with missing self-
reports in ESM studies is the peer-assisted ESM [4]. In this approach,
if the user does not respond to an ESM probe at a given moment, the
response is collected from the designated set of peers with different
levels of confidence; which is later used to complement the lack
of data from a participant [4, 10]. Researchers identified that by
collecting highly confident responses from peers, it is possible to
increase the quantity of the responses. Moreover, the presence of the
peers is also found to increase the compliance rate [10]. However,
the key requirement in this approach is the presence of a set of
designated peers, from whom the responses are collected in the
absence of self-reports. On the contrary, our proposed framework
automatically identifies a similar group of users and uses their
self-reports to train a model, which is used to estimate the future
self-reports of a user (who may have been dropped in between).

2.3 Annotations with Similarity-based
AI-driven Approaches

The problem of obtaining ground truths for unlabelled dataset is
prevalent across domains (e.g., Human Activity Recognition (HAR),
Natural Language Processing (NLP), Medical Imaging (MI)), where
securing annotations is time-consuming and expensive [15, 37, 83,
85].

Researchers leveraged various similarity (e.g., user similarity,
task similarity) based AI models to deal with this problem. For ex-
ample, different types of user similarity (physical, behavioral, and
sensor-data specific) have been explored in a community similarity
network (CSN) so that smartphone based activity detection perfor-
mance can be boosted by sharing data among similar users [33]. On
other hand, similarity among various tasks have been explored by
specific machine learning algorithms such as transfer learning. In
transfer learning, the domain knowledge gained from one domain
is applied in another domain for a similar task [51]. In case of HAR
problems, Fallahzadeh et al. explored the cross-user similarity in
multiple activities and construct a network-level, feature-based rep-
resentation of the data in the source and target user [15]. Similarly,
in UnTran, Khan et al. used the source domain’s pre-trained activity
model and transferred the initial two layers of the network in the
target domain to generate the common feature space for both source
and target domain activities [31]. More recently, in SelfHAR [69],
the authors adopted a semi-supervised model to label large amount
of mobile sensing data using a small amount of labelled dataset
for activity recognition. The approach combines teacher-student
self-training and self-supervision so that the knowledge extracted
from unlabelled and labelled data can be used to reduce the labeling
effort. Similarly, Saeed et al. proposed a self-supervised approach
for feature learning from large amount of unalabelled sensor data
so that semnatic labels are not required and the learnt feature rep-
resentation can be used for down-stream HAR task [62].

In various NLP tasks (such as machine translation, affective text
analysis, word sense disambiguation), crowdsourcing has been used
to obtain labels from non-experts and then applying some aggre-
gation strategy (e.g., voting policy, minimal variance method) to
obtain the final ground truth [64, 65, 85]. In the case of voting policy,
the score is determined as the one as agreed by half of the prac-
titioners [36], whereas for minimal variance method, the ground
truth is modeled in such a way the variance between estimation
and ground truth is minimized [37]. More recently, inspired by the
performance of large language models (LLM) in text-based tasks,
Liu et al. applied the LLMs as a few-shot learner (so it requires
fewer annotations) in context of various health tasks (cardiac signal
analysis, metabolic calculation) to provide meaningful inferences
using the wearable and physiological data [39].

2.3.1 Leveraging User Similarity for Emotion Inference. In the do-
main of affective computing, a few attempts have been made to
leverage user behavior similarity for emotion inference. For ex-
ample, Sun et al. developed iSelf, which demonstrates that using
transfer learning methods, emotion labels can be estimated from a
few self-reports and other auxiliary data, like usage statistics and
sensor details [68]. In [1], Alam et al. automatically label the se-
quence of emotions in a dyadic conversation using different feature
sets such as acoustic, lexical, and psycholinguistic features. Piana
et al. presented a framework that uses generic layer followed by
sparse coding layer to infer emotion from different gestures [55]. Xu
et al. proposed a collaborative-filtering based approach to predict
the depressive symptoms among students [79]. In this approach,
the authors created mobile-sensed behavior features and calculates
personalized relevance weights, which are used to impute the miss-
ing label at the different time periods. While the approach aims to
estimate missing labels, they rely on other sensor modalities unlike
the proposed approach in this paper. Bangamuarachchi et al. ex-
plored a community level data aggregation approach exploring the
mobile sensing data similarity so that the mood inference during
eating can be addressed with limited personal data [2].

Multi-task learning (MTL) is a variation of transfer learning,
where models are built simultaneously to perform a set of related
tasks [9]. Learning multiple tasks together helps to share knowl-
edge among similar tasks, thereby often yielding superior perfor-
mance [9, 28]. A few researchers also applied Multi-task learning
(MTL) for affect determination by identifying different related tasks.
For example, Xia, and Liu proposed anMTL framework for recogniz-
ing continuous and discrete emotions from speech as two separate
tasks [78]. In order to predict mood, stress, and health from the
data collected from surveys, wearable sensors, smartphone logs,
and the weather logs Taylor et al. used a personalized MTL frame-
work [29, 70]. Similarly, to counter the issue of labeled data, an
MTL based pain recognition model has been developed [40].

Key Takeaways: Summarizing the discussion of the related
works, we note that while the preventive measures are effective to
engage the participants in long-term user studies, users still drop
out [67]. As a result, the researchers face the challenge of obtaining
high quality data. To address this problem, missing labels can be
constructed using similarity-based machine learning models. While
these kind of approaches are performed in other domains (e.g.,
HAR [62], depressive symptom prediction [79]), they rely on other
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(a) Self-reporting UI (b) Circumplex model [61] (c) Emotion and VA relationship

Figure 2: Experiment Apparatus - (a) the self-report UI was used to collect the emotion self-report, (b) the Circumplex model of
emotion, which guides the self-report UI design, (c) relationship among the selected emotions and the valence-arousal (VA)

sensor data (e.g., mobile sensing dataset [2, 33]) for quantifying and
identifying the similar users. Although inspired by these works,
the proposed approach, leverage only the self-reported emotions
to extract similarity characteristics implicitly for constructing the
missing emotion self-reports of dropout participants.

3 USER STUDY I: HOMOGENEOUS
POPULATION

In this section, we discuss the field study including data collection
apparatus, participants, study procedure and the collected dataset.
This work has been approved by our institute’s ethics committee,
and we have obtained the IRB approval prior to the user study.

3.1 Experiment Apparatus
We implemented an Android-based smartphone application (An-
droid version ≥ 6.0) for collecting the emotion self-reports. The
self-reporting UI (Fig. 2a) consists of four emotions (happy, sad,
stressed, relaxed); the users had to select one emotion at a time
based on what they are experiencing at the moment, and press the
‘Record Emotion’ button to log the data. We select these emotions
based on the Circumplex model (Fig. 2b) of emotion [61]. According
to this model, human emotion comprises two dimensions - valence
(indicating the pleasure) and arousal (indicating the activeness).
As a result, the Circumplex model represents emotions in a 2D
plane in four quadrants. Selecting a representative emotion from
each quadrant allows to cover the different spectrum of valence
and arousal. Therefore, we select these four emotions (happy, sad,
stressed, relaxed), which belong to different quadrant of the Cir-
cumplex plane. We show the mapping between these emotions and
their valence and arousal (based on the position on the Circumplex
plane) in Fig. 2c. Additionally, we kept the interface simple by ex-
plicitly recording the emotion. We did not consider the intensity of
perceived emotion, which can make self-reporting difficult. Notably,
the same emotions have been used in earlier works for emotion
modeling tasks [20, 58]. We also keep the provision of No Response,
so that the user can skip self-reporting by selecting this option.

We issued the probe when the phone was in use (screen was
unlocked). To keep the interruption low, the probe was issued once

the user completed tasks in one application and launched the next
one. Additionally, there was a gap of at least two hours between two
consecutive probes.We selected the inter-probing interval of at least
two hours as this is often considered adequate in ESM studies [86].
Collected emotion self-reports are temporarily stored on the phone
and later uploaded to the server. We performed off-line analysis on
this dataset.

3.2 Study Participants and Procedure
We recruited 30 university students (24M, 6 F, aged between 20−33
years) for the field study. Each of these participants were awarded
a gift voucher worth 10 USD. We installed the application on their
smartphones and instructed them to use it for 6 weeks to record
their emotions. We also informed them that they would receive a
self-report pop-up at different time periods of the day. Once the
self-report pop-up was delivered to the participant, it remained in
the foreground. There was no timeout for the pop-up. A participant
could dismiss the pop-up either by recording the emotion self-
report or by swiping it away.The participant was required to record
their perceived emotion from one of the four available options.
The participants were further instructed that if they wished to
skip answering a probe, they should select the No Response button
instead of dismissing the pop-up. This approach allowed to deal
with any inadvertent swipe on the screen and helped to calculate
response rate accurately by considering the No Response options.

We observed that 2 participants left the study in between. Among
the remaining 28 participants, 4 participants recorded less than
100 self-reports during the 6-weeks of the study. To identify the
minimum number of self-reports required from a participant, we
looked at the CDF of the self-reports of the 28 participants (Fig. 3a).
We observed that ≈ 15% of the participants recorded less than 100
self-reports. In a normal distribution, as ≈ 15% entries are there
below ` − f , (` implies mean, f implies SD) [26], we decide to
use 100 self-reports as the minimum one. Notably, our goal is to
discard participants having fewer self-reports, therefore, discarded
participants falling below one f (not above one f). As a result, we
did not use data from the four participants. We ran all analysis on
the remaining 24 participants (20 M, 4 F).
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(a) CDF of self-reports
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Figure 3: Homogeneous dataset details - (a) CDF of 28 users’ self-reports reveal that ≈ 15% users are having less than 100
self-reports. This helps to drop four users with less than 100 self-reports and carry out the analysis on remaining 24 users.
(b) User-wise distribution of emotion self-reports. All but 7 users (1, 5, 8, 16, 17, 20, 22) have recorded all four emotion states.
Overall, we have 17% happy, 8% sad, 25% stressed, and 50% relaxed self-reports. (c) User-wise response rate reveals a very high
response rate across users (mean: 95.75%, SD: 6.5) and (d) User-wise daily average response (mean: 5.6, SD: 2.4)

3.3 Homogeneous Dataset Description
We have collected a total of 5, 677 emotion self-reports, out of which
only 5%were marked as No Response. For all but 6 users, the amount
of No Response labels was less than 5%. We removed all the No Re-
sponse labels before further processing. Therefore, we have 5, 393
valid emotion self-reports. We refer to this dataset as the Homoge-
neous dataset due to the profile homogeneity of the participants (all
were same university student).

We obtained on average 224 (std. dev 94) valid self-reports per
user. In Fig. 3b, we present the distribution of the four emotion
self-reports of each user. All but 7 users (1, 5, 8, 16, 17, 20, 22)
recorded four emotion states. For most of the users, relaxed was
the most dominant emotion. We also observed that all the emo-
tion self-reports were not uniformly distributed. The non-uniform
distribution pattern has been encountered in earlier studies also
due to in-the-wild nature of the studies [38]. Overall we recorded
17%, 8%, 25%, 50% self-reports labeled with happy, sad, stressed and
relaxed emotion states respectively from the participant responses.

We investigate the engagement of the participants in our emo-
tion self-report collection study in Fig. 3c and Fig. 3d. First, we
define response rate as E∗100

E+=A , where E indicates the number of valid
emotion labels (happy, sad, stressed, relaxed) and =A indicates the
number of No Response labels. Notably, we trigger the ESM probes
judiciously (after the user completed task in an app) and instructed
the participants not to dismiss the self-report pop-ups; if they are
really occupied, they may select No Response. Hence, we expected
a very few probes to be dismissed by the users, where No Response
indicated the skipped probes. In Fig. 3c, we show that 87.5% partic-
ipants have a response rate of at least 90% and obtain an average
response rate of 95.75% (std dev. 6.50). We also show the average
number of daily probes answered (either valid emotion label or No
Response) by every participant in Fig. 3d. We observe that 67% of
the participants have answered more than 4 probes on average on
a daily basis, while all the participants have answered at least 2
probes on average on a daily basis.

4 FEASIBILITY ANALYSIS
In order to estimate the missing self-reports by sharing data among
similar users, we need to findways to identify similar users based on

the self-reporting characteristics and check if these attributes can
distinguish the emotions. Only by sharing data among similar users,
the missing emotion self-reports can be estimated. Accordingly, we
investigate the following aspects in this section - (a) quantify the
self-reporting behavior of every user, (b) measure self-reporting
similarity across users, and (c) distinguish emotions using the self-
reporting characteristics.

4.1 Quantifying Self-reporting Behavior
We quantify self-reporting behavior of a user with the help of - (a)
emotion-state transition, (b) emotion persistence time and (c) emotion
sequence length. We decide to use these characteristics for the fol-
lowing reasons. First, emotion transitions indicate the probability
of the next emotion from the current emotion [71]. Second, as the
persistence time of an emotion indicates the continued existence
of the emotion [75], therefore, if the second emotion self-report is
collected within this time period, it is more likely that the same
emotion is recorded. Finally, if a number of emotion self-report
sequences are observed, it may be possible to find the typical recur-
rence length of an emotion before it changes. Next, we investigate
the utility of these properties for self-report quantification.

4.1.1 Emotion State Transition. Oneway to represent self-reporting
behavior as the emotion-state transition. It depicts the most likely
next self-reported emotion, given the current emotion self-report.
In literature, state transition is used as an indicator of future emo-
tion [19, 71] and in related behavioral studies [47]. Precisely, we
quantify the emotion state transition of every user as the probabil-
ity of switching from the current emotion, to the any of the four
emotions (including continuing to remain in the current emotion),
in the next self-report. To compute the probabilities, we use the
entire sequence of observed self-reports. We organize these proba-
bilities in a 4 × 4 matrix (Fig. 4) and define it as the state-transition
matrix (% ). We denote the state transition probability from state
G to state ~ using ?G~ , where G,~ ∈ {happy, sad, stressed, relaxed }.
We compute the transition probability ?G~ as the ratio of the total
number of transitions made from emotion G to ~ (=G~ ) and the total
number of transitions made from emotion G to any state (=G ) (see
Eq. 1). The emotion-transition matrices are calculated for every
user.
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?G~ =
=G~

=G
(1)

Figure 4: Emotion transition
matrix

Figure 5: Schematic showing the computation of emotion per-
sistence time. For happy state it is the average of the average
elapsed time from two blocks. The average elapsed times are
2.5, 4 respectively from the first and second block. Therefore,
the persistence time is average of 2.5, and 4 i.e. 3.25 hours.

4.1.2 Emotion Persistence Effect. Self-reporting behavior can also
be characterized using the persistence effect of emotion. The existing
literature highlights that once the user feels an emotion, the feeling
persists for some duration (a couple of seconds up to several hours,
or even longer) [17, 75]. Some emotion like sadness lasts the longest,
while shame lasts the least [74]. As we captured the self-reports
with minimum interval of two hours and a few emotions can persist
over hours, persistence time indicates the continuation of previous
emotion. Emotion persistence gives an intuition of how much time
(denoted as persistence time), one user has stayed in a single emotion
state. To compute persistence time of a particular emotion, we
define the elapsed time, indicating the time-duration a user stays
in the present emotion state, before providing the next self-report.
We consider one emotion (say, emotion x) at a time and parse the
sequence of observed self-reports of the user to find the blocks,
where this emotion is reported. We compute the average elapsed
time from each of these blocks. To compute the persistence time of
that emotion (emotion x), we compute the average of the average
elapsed times (obtained from different blocks). Precisely, if there
are : different blocks for emotion x, with average elapsed time of

8Cℎ block as C8 for 1 ≤ 8 ≤ : , the elapsed time for x is )G =

∑:
8=1 C8
:

.
The above-mentioned process is repeated for all the emotions.

For example, in Fig. 5, the happy state appears in two blocks - once
for 2 times (column 1, 2), and the second one for 3 times (column
5 to 7). For the first occurrence, the elapsed times in happy states
are 2 and 3 hours, and in the second occurrence, the elapsed times
are 6, 4 and 2 hours, respectively. The average elapsed times from
these two blocks are 2.5, and 4 hours respectively. Therefore, the
persistence time of happy state is the average of 2.5, and 4 hours, i.e.
3.25 hours. In this way, we compute the emotion-wise persistence
time of all the users.

4.1.3 Emotion Sequence Length. To quantify the self-reporting be-
havior, we also use emotion sequence length as an attribute. This
feature captures the typical sequence length of a specific emotion
self-report, i.e. once a user reports an emotion, how many times
do they continue reporting the same emotion. To compute this,
we parse the sequence of observed self-reports and identify the
number of times a user has reported the same emotion at-a-stretch.
In specific, if there are k different sequences for an emotion (say x),
with the length of 8Cℎ sequence as 38 for 1 ≤ 8 ≤ : , the sequence

length for x is �G =

∑:
8=1 38
:

. For example, in Fig. 5, the chain of
happy emotion appears twice - once for 2 times (column 1, 2), the

second time for 3 times (column 5 to 7). We compute the average of
these continuous sequence lengths and represent it as the sequence
length for the happy state. As a result, the sequence length of happy
state is average of 2, and 3 (i.e. 2.5). We repeat this procedure for
all the users to compute the emotion sequence length for every
emotion.

4.2 Measuring Self-reporting Behavior
Similarity

Once the self-reporting behavior is quantified in terms of emotion-
state transition, persistence effect and sequence length, we investi-
gate if there is similarity in the self-reporting behavior across users.
We compute the Pearson correlation coefficient between every two
users’ state-transition probabilities, persistence times, sequence
lengths and show the heatmaps in Fig. 6a, 6b, 6c respectively.

We observe that for each user, there exists a group of users
exhibiting similar self-report transition probability, similar persis-
tence effects and similar emotion sequence lengths. However, the
number of these similar users may vary for every user. The key take-
away from these observations is that there exists a group of users
with similar self-reporting behavior. Hence, the data among these
users may be shared to train a model for estimating the (missing)
self-reports of a user, who may have dropped from the ESM study.

4.3 Distinguishing Emotions with
Self-reporting Characteristics

Once we could identify the similar users based on the self-reporting
characteristics, we investigate if these self-reporting attributes
could be used to distinguish different emotions (happy, sad, stressed,
relaxed).

First, we investigate whether the self-report transition patterns
(measured using emotion transition probabilities) are useful to
detect the emotions. To investigate this, we computed the emotion
transition probabilities (as per Eq. 1) in the aggregate data of the
participants in Fig. 7a. We observe a heavy diagonal indicating that
once a user is in a specific emotion, they are more likely to report
the same emotion in the next self-report. This observation may help
to determine the missing emotion self-reports.

Next, we investigate if another self-reporting characteristic i.e.,
persistence times vary across emotions. We grouped the persis-
tence times values (after normalization) according to these emo-
tions and compare them using Kruskal Wallis test [44] (Fig. 7b).
The Kruskal Wallis test revealed a significant effect of emotion on
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(a) Emotion-transition similarity (b) Persistence effect similarity (c) Sequence length similarity

Figure 6: Heat-maps showing the similarity in different self-reporting characteristics for every pair of users - (a) emotion
transition similarities across users, (b) emotion persistence times similarity across users, and (c) emotion sequence length
similarity across users.

(a) Emotion-transition probabilities (b) Persistence time comparison (c) Sequence length comparison

Figure 7: Comparison of the variations in the self-reporting characteristics across emotions. (a) the transition probabilities
reveal that users aremore likely to provide the same emotion self-report as the current one, (b) the persistence time (normalized)
vary significantly (p<0.05) across emotions, (c) the emotion sequence lengths also vary significantly (p<0.05) across emotions.

persistence times (j2 (3) = 13.17, ? < 0.05). A post-hoc test us-
ing Mann-Whitney tests with Bonferroni correction [45] showed
the significant differences (? < 0.05) between following emotion
pairs, happy-relaxed, sad-stressed, and sad-relaxed. Similarly, we
performed the Kruskal Wallis test to identify the effect of emo-
tions on the other self-reporting characteristic i.e., sequence length
(Fig. 7c), which revelaed a significant effect with the following test
statistics ({j2 (3) = 19.12, ? < 0.05}). A post-hoc test using Mann-
Whitney tests with Bonferroni correction showed the significant
differences between every emotion pairs except the following one
(happy-stressed). In summary, these self-reporting characteristics
vary significantly across emotions, and therefore may be used to de-
velop machine learning model for estimating the missing emotion
self-reports.

5 MUSE FRAMEWORK
In this section, we discuss the architecture of the MUSE frame-
work (see Fig. 8). We use Multi-task Learning (MTL) to estimate the
emotion self-reports as it leverages well on the concept of general-
ization to return superior performance if the tasks are related [60].
In our case, learning a self-report prediction model for every user is

considered a task. So, the MTL internally shares knowledge (train-
ing dara) among related tasks (users) and estimates the emotion
self-reports for every user. Next, we discuss in detail the input to
the framework and the self-report estimation model.

5.1 Input Data Representation
The inputs to the framework are a combination of emotion self-
reporting characteristics (as discussed in Section 4.1) - (i) emo-
tion state transition probabilities (ii) emotion persistence period
(iii) emotion recurrence lengths. The emotion-transition probabili-
ties indicate the likelihood of current emotion based on the previous
one, whereas persistence effect indicates the time spent in a given
emotion state. Both of these are combined to obtain an input vector
(Influence4 (F4 )). The emotion recurrence length (Sequence_length
(L)) is considered as another input. These two features (Table 1)
are the input to the self-report estimation model. We discuss the
computation of these two inputs next.

5.1.1 Influence4 (F4 ). Influence4 (F4 ) captures the self-reporting
pattern in terms of both emotion transition and emotion persistence.
Precisely, it measures the influence of the previous emotion 4′ on
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Figure 8: The architecture of the MUSE framework. The self-
reports of all users are quantified and fed to theMTLnetwork,
which implicitly leverages user similarity and returns self-
report prediction model for every user.

Parameter name Parameter description

Influence4 (F4 )
Influence of self-report state 4 on current instance,
where 4 ∈ {ℎ0??~, B03, BCA4BB43, A4;0G43 }

Sequence_length (L) Number of times the same self-report is recorded
at a stretch as noted in current instance

Table 1: Inputs to the self-report estimation model

the current emotion 4 , where 4, 4′ ∈ E = {happy, sad, stressed,
relaxed}. Based on the emotion transition behavior, it is possible to
identify the most probable emotion 4 in the current emotion from
the previous emotion 4′ (Section 4.1, Emotion State Transition).
Moreover, a past emotion 4 ∈ E has an impact on the present one,
based on the time elapsed between past self-report 4 and current self-
report 4 (Section 4.1, Emotion Persistence Effect). Intuitively lower
the elapsed time, higher will be the impact of the past self-report –
4 . Hence, the parameter F4 is designed to capture the influence of
a previous self-report state 4′ ∈ E on current self-report 4 as the
product of - (a) probability of the current emotion is determined
as 4 based on the previous emotion 4′ and (b) normalized elapsed
time since last observed emotion self-report, 4 . Mathematically, we
express this as follows,

F4 = ?4 ∗ (1 − g4 ) | 4 ∈ E (2)

where ?4 indicates the probability of the current emotion being
determined as 4 based on the previous self report and g4 indicates
the normalized elapsed time from the last reported 4 state.

We apply discrete-time Markov Chain [66] to compute the prob-
ability (?4 ) of the current emotion state 4 based on the previous
self-report. Consider a 4−size vector (for happy, sad, stressed, re-
laxed) 4=−1, which represents the previous emotion self-report (at
instance (= − 1)) in terms of one-hot encoding [22]. We multiply
4=−1 with the emotion transition matrix % (computed for every
participating user following Eq. 1) to estimate the vector 4= , which
denotes the probabilities of obtaining each emotion at the current
(=Cℎ) self-report instance. Mathematically, we express this as fol-
lows,

4= = 4=−1 .% (3)

We select the value of ?4 by looking into the corresponding position
of emotion 4 at current self report vector 4= .

In order to compute the normalized elapsed time g4 for emotion
4 ∈ E, first we construct a 4-size vector, which holds the absolute
elapsed time between the current time instance and the last self-
reported emotion 4 ∈ E. We update this vector with every new
emotion self-report instance, as the elapsed time changes with
every new reported emotion. Finally, we select g4 by looking into
the proper position of emotion 4 in this vector and normalize it by
dividing the same with the highest value in the vector.

5.1.2 Sequence_length (L). This parameter captures the number
of times a user provides the same emotion self-report at a stretch,
depicting the recurrence pattern in self-reporting. In order to com-
pute, we check if the current emotion self-report is the same as the
previous one, then the sequence length L is incremented, otherwise,
it is reset to 0 (see Section 4.1, Fig. 5).

5.2 Self-report Estimation Model
We implement a neural network basedMulti-Task Learning (MTL) [9]
model for emotion self-report estimation. The model predicts the in-
dividual user’s self-report, which is considered as a task. We attempt
to construct the model by (a) shared learning; learning features of
one user (one task) using related features from other similar users
(shared tasks) and by (b) task-specific learning; in parallel, make
some portion of the model task-specific to capture the personalized
behavior (specific to a user). Notably, the shared learning alleviates
the issue of training data scarcity for the personalized model.

The architecture of the proposed Multi-task Learning Neural
Network (MTL-NN) model for self-report estimation is shown in
Fig. 8.We implement two hidden layers to build the Neural Network.
The initial layers are used to transform the input vector to learn the
generic representation, while the final layers are used to obtain user-
specific representation. The initial layers are shared across tasks to
improve learning by using the training data samples of other related
tasks (similar users). This data sharing allows the model to learn a
generic representation by leveraging self-reporting characteristics
similarity. For example, this layer learns by sharing information
among those users, who have very high persistence time in the sad
state or among those users, who frequently move to the relaxed
state from the sad state.

On the other hand, the final task-specific layers allow learning
user-specific representations. In this layer, the traits of the indi-
vidual user are taken into consideration to estimate her emotion
self-reports. This layer ignores inputs from other users (as shown
in different colors in Fig. 8) by assigning them small weights. This
task-specific layer uses the embedding obtained from the shared
layers and adds user-specific customization to generate the final
output. For example, this layer leverages the generic representation
for a set of users exhibiting relatively high persistence time in the
sad state, and then adopts customization for a specific user, who
shows exclusively high persistence time in the sad state. As a result,
personalized nature of self-reporting behaviour is captured using
the generic representations obtained from the shared layers.

We apply the input features as noted in Table 1 to train the MTL-
NN model. Since building a model for every user is considered as
a separate task, while training the model, we aim to minimize the
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total loss (!C>C0; ). Mathematically, we express it as follows,

!C>C0; =
∑
∀D∈U

qD ∗ !D (4)

where qD is the weight for user D and !D is a user-specific loss
function. We assign equal weight for every user’s loss function (qD )
for simplicity. We use categorical cross entropy (as there are four
emotions) as the user specific loss function (!D ). The model takes
multiple users’ data at one time, however, during training a single
batch contains data from one user at a time. This training approach
is inspired by work for mood prediction using personalized MTL
strategy [29]. To take care of the ordering effect in a batch, shuffling
is done. This training data organization approach helps to predict
the emotion self report of that user only, and as a result, the errors
made during prediction are backpropagated to learn the correct
weights in every layer (shared and task-specific) of that user. In this
way, by selecting each user and continuously updating the task-
specific and shared weights, the MTL-NN model learns the generic
and task specific representation for every user. Notably, MTL itself
works as a regularization tool to avoid overfitting [60]; additionally,
we apply dropout as the standard approach for regularization in
neural network.

We used the following neural network configuration. The net-
work consisted of 3 hidden layers. The number of nodes are 5, 8, and
8 respectively. Each of the layers used the ReLU activation function.
The task-specific layer used softmax as the activation function (as
there are four emotions). The outputs are the probabilities of the
next emotion state. One-hot encoding is done on the probability
values to find out the next state. The total loss is summed across all
the tasks (Eq. 4), where individual loss functions are the categorical
cross entropy loss functions. During training, first, we compute the
transition matrix based on the observed emotion sequence. In case
of training, as we know the current state, we directly use the cor-
responding one-hot encoding of the emotion for influence vector
calculation. During testing, we predict one instance at a time. In
specific, we estimated the current emotion. Once we estimate the
current emotion, we multiply the corresponding one-hot vector
with the transition matrix to obtain the influence vector (applying
Markov Chain). Also, if the estimated current emotion matches
with the previous emotion, we increase the sequence length by one.
These values are used as input to the network for estimating the
next state.

6 EVALUATION
In this section, first, we describe the experimental setup and then
evaluate the performance of the MUSE framework.

6.1 Experiment Setup
We split the data into a 60 − 40% ratio for every user, where the
initial 60% is used to train the model and the remaining 40% is
used for testing. We train the MTL model using the initial 60% data
combined from each user and test it on the remaining 40% data
of one user at a time. This setup simulates the condition where a
participant drops from the study in between (during the study, the
participant provided 60% self-reports and the missing 40% emotion
self-reports need to be estimated.)

Hyperparameter tuning: To select the optimal values of the hy-
perparameters, we perform a grid search. We try with the following
(i) batch sizes (8, 16, 24), (ii) epochs (20, 30, 40, 50) and (ii) dropout
rates (0.15, 0.20, 0.25, 0.25) to train the model. It is observed that for
the batch size of 8, the epoch of 40, and dropout of 0.15, the best
classification performance is obtained. Hence, we fix these values
as the model hyperparameters.

6.1.1 Performance Metric. We use AUCROC (Area under the Re-
ceiver Operating Characteristic curve) as the performance metric to
measure the performance of the self-report estimation model. We
rely on this metric, as it is typically used for an unbalanced dataset,
which is also the case for us. We report the weighted average of
AUCROC for every user. We calculate the weighted average of AU-
CROC (0D2FC ) from four different emotion self-reports as per Eq. 5,
where 58 , and 0D28 indicate the fraction of samples and AUCROC
for emotion 8 respectively.

0D2FC =
∑

∀8∈E 58 × 0D28 ,where E
= {ℎ0??~, B03, BCA4BB43, A4;0G43} (5)

We decide to use the weighted average so that the sample imbalance
does not inadvertently impact the overall classification performance.
At the same time, we report themean and std. deviation of AUCROC
per emotion to get a fair idea how accurately each emotion is
identified.

6.1.2 Baselines. We compare the performance of MUSE with the
following baselines. For all the baselines, we use the initial 60% self-
reports of the user for training and the remaining 40% self-reports
for testing.

• Most Represented Emotion Model (MRE): In our dataset,
most of the users have reported relaxed emotion as the most
frequent one (see Fig. 3b). Hence, we implement this personal-
ized baseline model, which always predicts the most frequently
represented emotion of a user. We identify the most represented
emotion from the training data of the user and predict it as the
estimated self-report in the testing phase.

• Top-2 Most Represented Emotion Model (MRE-2): This is
a variant of MRE, where we identify the top two frequently
occurring emotions present in every user’s training data. In the
testing phase, the model declares an agreement whenever one of
these two states is found in the test emotion label, otherwise a
mismatch.

• Sequential Model (SEQ): We develop a personalized LSTM
(Long short-term memory) [25] based model for this baseline.
To construct the input to the SEQ model, we look into the self-
reports used in the past 24 hours and use them as the input. As the
self-reports are collected with a minimum interval of 2 hours, we
use a sequence size of 12 (i.e., previous 12 time steps). However,
if there are not 12 self-reports in the previous 24 hours, we pad
it with the most frequently reported emotion self-report within
the 24 hours. This baseline enables us to assess, whether we
can estimate the missing self-reports based on only the previous
self-report sequence.

• Single-Task Learning Model (STL):We develop a personalized
DNN (deep neural network) model, where we do not use self
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reports from any other users. It has the same network configu-
ration like MUSE and it uses the same set of features (Table 1)
as used in the MUSE framework based on the specific user only.
This model enables us to assess if we can estimate the missing
self-reports from observed personal self-reports only, without
relying on the other users.

• All-User Model (AU): The proposed MTL model leverages the
similarity in self-reporting behavior among users to estimate the
missing self-reports. This baseline, on the contrary, overlooks
the aspect of self-reporting similarity. To construct this model
for a user, we aggregate the observed data (initial 60%) and the
self-reports from all other users. It extracts the same of features
(Table 1) from this aggregated data and trains a DNNmodel (using
the same configuration like MUSE) for estimating the missing
self-reports. Comparing performance with this baseline signifies
the importance of sharing training data among similar users as
performed in the MUSE framework using MTL.

• MarkovChainModel (MKC):Wedevelop a personalizedMarkov
Chain model as a baseline. In this model, for every user based
on the observed self-reports (initial 60%), we construct a tran-
sition matrix. This is used to estimate the unobserved emotion
self-reports, where the current emotion self-report is multiplied
with the transition matrix to obtain the next self-report. This
model helps to assess the role of self-report transition pattern.

• Similar User Clustering (CST): We also develop a baseline
by combining data from the similar users using a clustering ap-
proach (similar to approach taken in [34]). In specific, for every
user, based on the observed self-reports (initial 60%), we compute
the transition similarity vector and then run a k-means clustering
algorithm on other users’ state-transition similarity vectors. To
identify the optimal number of similar users, we vary the value of
k and select the one having highest silhoutte score [63]. Once, the
similar users are identified, data from these users are combined
to train a feed forward network. It has the same network config-
uration like MUSE and it takes the same features (like MUSE) as
input. The output layer produces a 4-dimensional output corre-
sponding to every emotion self-report state. We apply softmax
activation with cross-entropy loss for classification.

• Tree-based Model (TBM): We develop a personalized model
using Random Forest (using 100 trees) for this baseline. In this
model, for every user, based on the observed self-reports (initial
60%), we construct the self-report estimation model using the
same features as outlined in Table 1. This is used to estimate
the unobserved emotion self-reports. Comparison with the this
model helps to assess the superiority of the MUSE framework
over tree-based models.

• Collaborative Filtering based Model (CFM): In this baseline,
first, we create the emotion transitionmatrix of every user observ-
ing the initial 60% emotion self-reports. We apply the k-means
clustering on this profile data (transition matrix) to identify the
similar users. To identify the optimal number of clusters, we vary
the number of clusters (k) and select the number of cluster, which
returns the highest value of the silhouette score [63]. Once we
identify the similar users, we train separate personalized model
for each user. Later, to make prediction for a user (say u), we
input the features (as noted in Table 1) to each of the models of

the users belonging to the same cluster as u and apply major-
ity voting to obtain the final output. This approach is similar to
collaborative filtering adopted by Xu et. al [79].

6.2 MUSE’s Performance: Self-report Estimation
on Homogeneous Dataset

In this section, first we compare the self-report estimation perfor-
mance of MUSE with the baselines (on the Homogeneous dataset).
Later, we report the user-wise and emotion-wise estimation perfor-
mance.

6.2.1 Comparison with Baselines. We present the comparison of
self-report estimation between MUSE and the baselines in Fig. 9.
MUSE achieves an average AUCROC of 84% (std dev. 18%) by out-
performing all the baselines. The most represented emotion (MRE)
baseline exhibits significantly poor average AUCROC of 58% (std
dev. 24%), whereas, the model based on the top two most represen-
tative emotions (MRE-2) shows an average AUCROC of 73% (std
dev. 21%). The SEQ model and the STL model also perform poorly
with an average AUCROC of 58% (std dev. 19%), and 61% (std dev.
16%). Notably, the AU,MKC, CST, TBM, and CFM baselines show
relatively better performance, with average AUCROC of 75% (std
dev. 20%), 79% (std dev. 11%), 78% (std dev. 21%), 74% (std dev. 22%),
and 78% (std dev. 15%) respectively.

These observations demonstrate that always predicting the most
frequent (or top-two frequent) self-report (MRE model variations)
as the outcome is not a good choice. The poor performance of the
SEQ baseline can be attributed to the scarcity in data volume, which
does not allow the model to learn the variations in the self-report se-
quence. However, relatively better performance is obtained for the
tree-based model (TBM). The usage of only personal self-reports
(STL baseline) to predict future labels does not work well since
there may not be enough training samples. On the contrary, ag-
gregating self-reports across users helps to improves prediction
performance as observed in the AU baseline. The performance im-
proves if data from similar users are aggregated as observed in the
CST baseline or by adopting the collaborative filtering strategy
(CFM) or if the emotion transition patterns are leveraged as ob-
served in the MKC model. Both of these (aggregating data among
similar users, leveraging emotion transition pattern) captured in
the MUSE framework by leveraging data from the similar users
based on the self-reporting behavior (performed implicitly using
the MTL), which help to obtain superior performance to estimate
missing self-reports.

6.2.2 Self-report Estimation Performance. We show the user-wise
and emotion-wise self-report performance of MUSE in Fig. 10. We
obtain an average user-wise AUCROC of 84%, while the AUCROC
is more than 60% for 83% of the participants (see Fig. 10a). Notably,
for a few users (1, 3, 5, 20, and 22) in the test data, only two emo-
tions are present and each instance of these emotions is identified
correctly, boosting their 0D2FC to 100%. On the other hand, users
(11, 17) observed anomalies (major difference) in their self-reporting
behavior in the test phase, dropping their AUCROC.

We show the emotion-wise AUCROC in Fig. 10b. It is observed
that relaxed is the most accurately identified emotion (mean AU-
CROC - 82%), followed by the stressed emotion (mean AUCROC -
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Figure 9: MUSE’s emotion self-report estima-
tion performance on Homogeneous dataset -
comparison with baseline AUCROC. Error bar
indicates std. dev. The red (dashed) line indi-
cates 50% AUCROC.
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Figure 10: MUSE’s self-report estimation performance on the Homogeneous
dataset - (a) user-wise AUCROC (b) emotion-wise AUCROC. Error bar indi-
cates std. dev.
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Figure 11: Change in self-report estimation performance with varying amount of observed self-reports and varying number
of users. (a) Mean AUCROC gradually improves with increasing self-reports (b) Improvement in mean AUCROC is more
pronounced for stressed, relaxed emotion (c) Mean AUCROC improves with increasing number of users

75%). The distribution of emotion self-reports (Fig. 3b) reveals that
the relaxed emotion is the most frequent one, therefore, the model
can learn more effectively as the number of data points are larger.
As a result, the model returns the best performance for the relaxed
emotion.

6.3 MUSE’s Performance: Influence of
Self-report Volume and Number of Users

We investigate the amount of self-reports to be observed so that
the missing self-reports can be estimated reliably. This helps to
understand howmany self-reports from a user needs to be captured
(before the participant drops out) so that MUSE can determine
the missing emotion self-reports. To investigate this, we vary the
number of observed self-report from 20% to 60% with an increment
of 5% in each iteration. In each iteration, we train the model for
the observed self-reports (i.e., 20%, 25%, …60%) and test with the
unobserved self-reports (i.e., 80%, 75%, …40%). Notably, as MUSE
needs to estimate the missing self-reports, for x% observed self-
reports, it needs to estimate (100-x)% self-reports.

We show the variation in user-wise and emotion-wise AUCROC
with increasing number of self-reports in Fig. 11. We observe that
user-wise AUCROC improveswith increasing number of self-reports
initially and then it stabilizes (Fig. 11a). This is intuitive (as the

amount of training data increases with increasing number of self-
reports and once sufficient self-reports are collected, the perfor-
mance stabilizes). We also note that for estimating the (missing)
self-reports with a good AUCROC (AUCROC of ≈ 80%), we need
to observe ≈ 50% self-reports (i.e., if a participant drops out even
before providing half of the required self-reports, it becomes chal-
lenging to estimate the missing self-reports with a high AUCROC).
Similarly, the emotion-wise AUCROC also improves with increas-
ing self-reports (Fig. 11b) , however, the improvement is more pro-
nounced for the stressed, relaxed emotions as these two emotions
have a comparatively large number of samples (Section 3.3).

We investigate deeper to find out the influence of number of
users on self-report estimation performance of MUSE. We vary
the number of users from 4 to 24 (with an increment of 4) for
a fixed amount of observed self-report (60%) and plot the user-
wise AUCROC in Fig. 11c. We observe that as the number of users
increases the AUCROC also improves. This can be attributed to the
presence of more similar users in a larger user pool, which allows to
accumulate more training data and therefore, the overall user-wise
AUCROC improves.
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Figure 12: Comparing prediction performance
with different baseline models on the Heteroge-
neous dataset. Error bar indicates the standard
deviation.The red (dashed) line indicates 50%AU-
CROC.

(a) User-wise AUCROC (a) Emotion-wise mean AUCROC

Figure 13: MUSE’s self-report estimation performance on the Heteroge-
neous dataset - (a) user-wise AUCROC (b) emotion-wise AUCROC. Error
bar indicates std. dev.

6.4 Relationship between Response Rate and
Self-report Estimation Performance

In this section, we investigate the relationship between emotion
self-report estimation performance and response rate. In an ESM
study, a high response rate is desired [3]. Therefore, we needed
to investigate if MUSE is biased towards the high responders (i.e.,
whether it can estimate self-reports only for the highly respon-
sive participants). To investigate further, we compute the Pearson
correlation coefficient between the participants’ response rate (as
defined in Section 3.3) and user-wise AUCROC of the framework.
We observe a correlation value of 0.177, which indicates no strong
correlation between response rate and AUCROC; thus MUSE does
not favor the highly responsive participants.

7 USER STUDY II: HETEROGENEOUS
POPULATION

In this section, we discuss the user study and the findings obtained
by evaluating MUSE on a diverse population, comprising partici-
pants with various age groups, professional background, gender,
and location.

7.1 Study Participants and Study Procedure
We carried out the 8-week in-the-wild study involving 30 partic-
ipants (16 males, 14 females) with diverse profiles. We recruited
the participants adopting an word-of-mouth approach [76]. The
participants were in the age range of 21 − 55 years. The age distri-
bution of the participants were as follows - 21 to 25 years (10%),
26 to 30 years (30%), 31 to 35 years (30%), 36 to 40 years (13%), 41
to 45 years (7%), 46 to 50 years (7%), and 51 to 55 years (3%). The
participants took part in the study from 10 different cities in three
different countries: Germany (2 cities), the Netherlands (2 cities),
and India (6 cities). The participants were from a diverse profes-
sional background, such as Information Technology professional
(20%), homemaker (13%), professor (10%), businessman (10%), school
teacher (10%), administration (10%), manager (6.7%), graduate stu-
dent (6.7%), unemployed (6.7%), researcher (3.3%), and nurse (3.3%).
Each of these participants were awarded a gift voucher worth 10
USD. Notably, this study population profile is strikingly different

from the Homogeneous dataset (Section 3.3), where the population
profile was mostly homogeneous.

We installed the Android application (described in Section 3.1) on
the smartphones of the participants. They were provided with the
same guidelines as outlined in Section 3.2 to conduct the study. The
participants were informed that they would receive a survey pop-
up (Fig. 2a) throughout the day, where they require to record their
emotions (happy, sad, stressed, relaxed). They were also instructed
to select the No Response option if they would like to skip the self-
reporting.

7.2 Heterogeneous Dataset Description
During this study, we collected 7314 emotion self-reports (mean:
243.8, std. dev: 164.76) from the participants. Each participant recorded
at least 100 self-reports. Regarding the distribution of different
emotion self-reports, overall we observed 11% happy, 9% sad, 29%
stressed, and 50% relaxed emotion self-reports.

7.3 MUSE’s Performance: Self-report Estimation
on Heterogeneous Dataset

We use the same experimental setup as described in Section 6.1,
to evaluate the performance of the MUSE on this newly collected
dataset. For every user, we split the data into a 60 − 40% ratio,
where the initial 60% self-reports are used to train the model and
the remaining 40% self-reports are used for testing. We fix the
model hyperparameters following the grid search, as described in
Section 6.1.

7.3.1 Comparison with Baselines. We compare the performance of
the MUSE with the baselines on the Heterogeneous dataset in this
section. Like Homogeneous dataset, in this case also, we observe
that MUSE outperforms all the baselines (average AUCROC of
82%, std. dev 14%) although some baselines (CST, AU, TBM, CFM)
return good performance (Fig. 12). However, as MUSE leverages
the self-reporting similarity across users using MTL, it returns the
best performance.

7.3.2 Self-report Estimation Performance. We present the emotion
self-report estimation performance of the MUSE framework in
Fig. 13. We show the user-wise AUCROC of the MUSE framework
in Fig. 13a,. We obtain an average user-wise 0D2FC of 82% (std.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ghosh, et al.

dev 14%), where 63% of the participants achieve 0D2FC more than
80%. Emotion-wise AUCROC is reported in Fig. 13b, where we
observe that relaxed state is identified with the highest AUCROC
(mean AUCROC 85%), followed by stressed, happy, and sad state
respectively. The results obtained on this Heterogeneous dataset
are consistent with the findings on the Homogeneous dataset, as
reported in section 6.2. For instance, the emotions present in a
comparatively large number (say, stressed, relaxed) are estimated
more accurately compared to other emotions (say, happy, sad).

These findings demonstrate that MUSE performs equally well on
a heterogeneous population, comprising participants from various
age groups, professional backgrounds, and locations; thus applica-
bility of the proposed approach while dealing with diverse group
of participants in an ESM study.

7.4 MUSE’s Performance: Transferability across
Different Study Population

We next evaluate the transferability of the MUSE framework to
assess how well it can generalize across different participant profile
for estimating the same emotion self-reports. In specific, we train
the proposed model on the Heterogeneous dataset (Section 7.2) and
test it on the Homogeneous dataset (Section 3.3). To perform the
evaluation, we select one user at a time (say<) from the Homoge-
neous dataset (test), include the user’s (<) initial 60% self-reports
along with the self-report details of the users of the Heterogeneous
dataset to train the model, and estimated the user’s (<) remain-
ing 40% emotion self-reports using the constructed model. This
approach enables us to evaluate the transferability (on a different
population - Homogeneous dataset) of the proposed model, which
is constructed using a separate, relatively diverse population (Het-
erogeneous dataset). We observe an average user-wise AUCROC
of 89% (std dev. 10%). This result is better than the earlier findings,
where the self-report estimation performance on the Homogeneous
dataset is 84% (Fig. 10), and on the Heterogeneous dataset is 82%
(Fig. 13).This improvement suggests that by training theMTLmodel
on a larger, diverse dataset, superior performance can be obtained;
thus demonstrating the generalizability of the MUSE framework
across different group of study population.

8 USE CASE OF MUSE: SMARTPHONE
KEYBOARD INTERACTION BASED
EMOTION DETECTION

In this section, we demonstrate the utility of MUSE for smartphone-
keyboard interaction-based emotion detection.We selected smartphone-
keyboard interaction-based emotion detection as the downstream
task for the following reasons: (a) due to the overwhelming usage
of various IM (instant messaging) applications (where frequently
emotions are expressed), keyboard interaction has become an useful
modality for emotion inference [58, 77], (b) due to the ubiquity of
smartphone, it allows in-situ sampling of human behavior (in our
case emotion self-report) efficiently [3, 52].

8.1 User Study and Dataset
We performed a 2-week in-the-wild study involving 14 participants
(10 M, 4 F). The participants were rewarded with a gift voucher

worth 5 USD. We obtained the IRB approval from the institute prior
to the study. We developed an Android keyboard app, which keeps
track of typing interactions (not actual text) and collects emotion
self-reports (happy, sad, stressed, relaxed). We discuss the keyboard
interaction tracking and self-report collection process next.

In this user study, we track the user’s typing session, which
is defined as the time spent at-a-stretch in a single app (before
changing to the next one). To track the typing interactions, we
developed an Android smartphone keyboard (as shown in Fig. 14a)
using the Android IME (Input Method Editor) functionality1. We
capture the timestamp of every key press event in a session. This
allows us to measure typing features like session duration, typing
speed, and session length. Additionally, we track if the backspace (or
delete) key was pressed in a typing session. This allows measuring
the typing mistake rate. Furthermore, we keep a track of special
characters inserted by the user. We consider any non-alphanumeric
character (except backspace and delete) inputted in a session as a
special character.

We also collect the user’s current emotion as soon as a typing
session is over (i.e., typing is done in an app and the user changes
the application) via the self-report collection UI (Fig. 14b). The user
reports one of the four emotion choices as shown in Fig. 14b. We use
the same interface (as used for self-report collection, Section 3). We
collected the same emotions as proposed in the MUSE framework
(Section 5).

The participants installed the Android keyboard app on their
personal phone, and used it for their regular typing activities. The
users were instructed that they would receive a pop-up based on
typing activities done throughout the day. In the pop-up, they had
to report the current emotion. They were also instructed to select
the No response option if they would like to avoid self-reporting at
the given point of time. We collected 2115 typing sessions from the
study. On average, there are 151.07 sessions (SD: 122.08) per user.

8.2 Emotion Inference Modeling
We use a Random Forest based emotion classification model. The
model is personalized because typing interactions vary across in-
dividual [14, 19]. The model uses five features (typing speed, error
rate, special character usage rate, session duration, session length)
to determine the user’s emotion during a typing session. These five
features have been calculated as follows: (51): typing speed - The
average elapsed time between two consecutive typing events in
a session is considered as the typing speed. (52): error rate - The
fraction of characters deleted in a session is considered as the error
rate. (53): session duration - The total elapsed time in a session is
the session duration. (54): session length -The number of characters
typed in a session is considered as the session length. (55): special
character usage rate - The fraction of special characters in a ses-
sion is considered the special character usage rate. We use these
five features as these are effective for smartphone keyboard based
emotion inference [18, 19]. We used the weighted F-score as the
classification performance metric.

1http://tinyurl.com/y54c69yf
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(a) App keyboard (b) Self-reporting UI

Figure 14: Experiment apparatus used in the user study -
(a) app keyboard (b) emotion self-report collection UI.

Figure 15: Comparing emotion detection perfor-
mance using the original self-reports and the es-
timated elf-reports. No significant difference is
observed in the user-wise F-score using Mann-
Whitney U-test.

8.3 Evaluation
To perform the downstream task of emotion inference, we train a
machine learning model combining keyboard interaction features
and emotion self-reports. We train the model in two ways. First,
we train the model using initial 80% of the actual self-reports (as
provided by the users), and test the model using the remaining
self-reports (20%). Second, to simulate the missing self-reports from
a user, we adopted the following approach. We used the initial 40%
self-reports to estimate the next 40% self-reports using MUSE. Now,
this 80% (40% actual, and 40% estimated using MUSE) self-reports
are used to train the model, and the remaining 20% self-reports (the
last 20% of the actual) are used for testing. This evaluation approach
ensures that the model is tested on the same dataset, while trained
in different ways (once with original self-reports, and once with
the estimated self-reports).

We compare the user-wise F-score using both these approaches
in Fig. 15. We observe that in the first case (the model is trained
using original self-reports), the average F-score is 76.8% (SD: 15.1%),
whereas in the second case (the model is trained using estimated
self-reports for the missing ones) the average F-score is 74.1% (SD:
21.5%). This implies that if estimated self-reports are used for the
missing self-reports, there is notmuch difference in the performance
of the downstream task. Since the obtained F-score values are not
normally distributed (? < 0.05 with Shapiro-Wilk test [81]), we
perform the paired Mann-Whitney U-test. However, we did not
observe a significant effect of self-report types on the F-score values
(U = 96.0, p = 0.47). These findings indicate that if the missing self-
reports are estimated using MUSE and those are used as ground
truth for the downstream task, we obtain similar performance (as
obtained using original self-reports) for the downstream task.

9 DISCUSSION
The experimental findings demonstrates that the MUSE framework
can estimate the missing emotion self-reports of dropout partici-
pants, thus assisting the researchers in HCI community to deal with
data collection challenges in an ESM study. However, deploying
the proposed framework for emotion self-report collection studies
or other ESM studies needs to consider a few aspects, which we
discuss next. We also highlight the limitations of the framework.

9.1 Implications of the Findings
The major implication from the current findings is that MUSE re-
duces the data collection overhead of the researchers (or study
designers), who face the challenge of limited data because of un-
planned dropout of users in an ESM study. If the users have reported
sufficient number of self-reports before dropping out, the model can
estimate the missing self-reports accurately. Another key takeaway
from the study is that MUSE performs efficiently for same task (i.e.,
estimates the same missing emotion self-reports) across different
study population if the training data is large and diverse (as ob-
served in Section 7.4). While this confirms the generalizability of
the framework across different study population, the generalizabil-
ity in other aspects (e.g., different emotion self-report estimation,
different ESM study) needs to be considered. Finally, the utility of
MUSE in missing self-report estimation for smartphone keyboard
interaction based emotion detection (Section 8) underscores the
effectiveness of proposed approach for downstream tasks.

9.2 Generalizability of the MUSE Framework
In this paper, we demonstrated that MUSE can estimate four emo-
tion self-reports (happy, sad, stressed, relaxed) collected using the
UI (Fig. 2a) in an ESM study. However, whether the same approach
can be used for (a) other emotions (b) other ESM studies and (c)
large diverse population is discussed next.

First, we do not foresee any major challenge while extending the
proposed approach to more number of emotion choices (beyond
just 4 emotions), multiple-choice questions, etc. Additionally, it is
possible to implement other scales like Self-assessment Manikin
(SAM) [5], Ekman’s six basic emotion model [13], Plutchik’s emo-
tion wheel [57] in the self-report study design. However, if the
number of emotions increases, the emotion transition matrix will
also increase in size and can result into a sparse transition matrix.
To address this, we may need to collect more number of self-reports
of different emotions. The key idea of applying MUSE for other
emotion self-report studies would be to quantify the emotion self-
reporting pattern and use them as input to the framework.

Second, we also envision that the proposed framework can be
extended to other ESM studies (beyond emotion self-reports). The
crux of the MUSE framework lies in modeling the emotion state
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transitions, which we observe from the sequence of obtained self-
reports. For any ESM study (in another domain), if the experimenter
can figure out the underlying transition pattern among different
self-reports (for that domain), the concepts of this framework can
be applied. For example, a fitness routine related ESM study, which
recommends future exercises to a player, could adopt the proposed
framework, since fitness exercises follow a regular transition pat-
tern (as people work-out with different body-parts at a certain
intervals).

Finally, the current findings on a reasonably large and diverse
profile of participants demonstrate the efficacy of MUSE (Section 7).
However, recent findings highlight that sensor-based complex mod-
els may not generalize well in longitudinal studies across country,
and participant profile [46, 80]. From that perspective, as the pro-
posed approach does not use any sensor data and relies only on
self-reporting characteristics, identifying similar users is easier and
therefore, can be effective in a large and diverse population.

9.3 Deployment Considerations
We discuss several factors that need to be considered for deploying
MUSE in an ESM study. First, it is challenging to understand apriori
how many self-reports are required to be collected from a user to
estimate the missing emotion self-reports accurately. Ideally, MUSE
should estimate the missing self-reports accurately by observing
few self-reports so that even if the participant drops (from the study)
early, the missing self-reports can be estimated. We demonstrated
that for the Homogeneous dataset, MUSE can estimate the missing
self-reports with an accuracy of 80 - 84% by observing 50 - 60%
self-reports (Fig. 11a). For example, although we collected 100 self-
reports in the user study (Section 3), in reality using half of these,
MUSE can estimate the remaining self-reports. This implies that
even if a user drops out after providing self-reports till half the
duration of the original one, the proposed approach can estimate
the self-reports. Nevertheless, this is empirically derived based on
this dataset, which in reality can be further complicated by user
self-report behavior, temporal and external events, and anomalies.
Also, as we observed MUSE performs well with relatively larger
number of participants than the usual sample size of HCI studies [7],
the proposed approach should be deployable for typical user base
in ESM studies (e.g., hundreds of users). If the framework is fed
with data from more users, the model gets the opportunity to learn
more effectively. However, in case of significantly large number
of users (e.g., thousands of users), the multi-task learning model
may encounter some delay during training as we consider self-
report estimation for every user a separate task. Therefore, it is
recommended to test the model performance before deploying it
for a significantly larger sample size.

Second, another challenge is to decide whether (a) to bootstrap
the model with a small number of self-reports and then retrain at
some interval or (b) to train the model once with sufficient number
of self-reports. Retrainingmay be useful for a long-running study, as
self-reporting behavior of a participant may change over time due
to external effects, environment, contextual fluctuations etc, [82]
subsequently the trained models get outdated [30]. An effective
way to build a reliable model could be to probe users intermittently,
collect the intermediate self-reports and retrain the model based

on newly recorded samples. However, this poses the challenge of
automatic identification of the retraining points.

Finally, MUSE leverages the self-reporting behavior similarity,
which we expressed in terms of emotion-transition, emotion persis-
tence time and emotion recurrence length. However, self-reporting
similarities may be computed from the various other modalities.
For example, identifying a group of users, who reacts similarly to a
specific emotion stimulus (e.g., watches media content more in a re-
laxed emotion) may be considered as similar. Moreover, participants
sharing similar profile (say attending same class, staying in same
dormitory etc), may also exhibit a similarity in their self-reporting
behavior. However, such approaches may require additional sensor
details and usage logs, which may raise privacy concerns.

9.4 Limitations
We acknowledge that as we are estimating the missing self-reports
(once a participant drops out) there may be some deviations than if
the participant would have continued and provided the actual self-
reports. The true self-reports are influenced by several temporal,
contextual, and external factors, which are extremely challenging
to factor in a machine learning model. Additionally, as MUSE esti-
mates the self-reports once a participants drops out (or completely
stops responding), the current implementation cannot be used for
estimating intermittent missing self-reports from a participant, who
responds for a few days and then becomes silent and so on. In future,
we will extend MUSE to handle a situation where the participant
responds initially, and then fall silent for a certain period of time,
before becoming active again.

10 CONCLUSION
In this paper, we propose MUSE, a multi-task learning (MTL) frame-
work to estimate the missing self-reports of dropout participants
in an ESM study. This framework will allow researchers (or study
designers) to deal with the unplanned withdrawal of the partic-
ipants and saves them from running multiple studies to collect
required amount of self-reports. To estimate the missing emotion
self-reports, MUSE leverages the similarity in the self-reporting
behavior among the participants. In specific, MUSE proposes an
approach to (a) quantitatively express the self-reporting pattern of
every user in terms of emotion transition probabilities, emotion
persistence times, and emotion recurrence length (b) share data
among similar users using the MTL network to estimate the missing
emotion self-reports of a dropout participant. We evaluated MUSE
by conducting two in-the-wild studies (N1 = 24, N2 = 30) of dura-
tion 6-week and 8-week respectively. The participants self-reported
four different emotions (happy, sad, stressed, relaxed) during this
period. The evaluation of MUSE on these datasets reveals that it
can estimate the missing self-reports with an average AUCROC
of 84% (Study I) and 82% (Study II). Furthermore, the evaluation
of MUSE on a smartphone keyboard based emotion inference sce-
nario highlights that using estimated self-reports, similar emotion
inference performance (like original self-reports) is obtained. These
findings demonstrate the possibility of reducing the data collection
overhead for study designers by estimating the missing emotion
self-reports from dropout participants in an ESM study.
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