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Abstract. In recent times, Deep Neural Networks (DNNs) have been
effectively used to tackle various tasks such as emotion recognition,
activity detection, disease prediction, and surface classification. How-
ever, a major challenge in developing models for these tasks requires
a large amount of labeled data for accurate predictions. The manual
annotation process for a large dataset is expensive, time-consuming,
and error-prone. Thus, we present SSLAM (Self-supervised Learning-
based Annotation Method) framework to tackle this challenge. SSLAM
is a self-supervised deep learning framework designed to generate labels
while minimizing the overhead associated with tabular data annotation.
SSLAM learns valuable representations from unlabeled data that are
applied to the downstream task of label generation by utilizing two pre-
text tasks with a novel log — cosh loss function. SSLAM outperforms
supervised learning and Value Imputation and Mask Estimation (VIME)
baselines on two datasets - Continuously Annotated Signals of Emotion
(CASE) and wheelchair dataset. The wheelchair dataset is our novel
unique surface classification dataset collected using wheelchairs show-
casing our framework’s effectiveness in real-world scenarios. All these
results reinforce that SSLAM significantly reduces the labeling overhead,
especially when there is a vast amount of unlabeled data compared to
labeled data. The code for this paper can be viewed at the following link:
https://github.com/Alfiya-M-H-Shaikh /SSLAM.git
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1 Introduction

Recently, Deep Neural Networks (DNN) have been found effective in differ-
ent domains including healthcare, activity recognition, surface classification,
and human behavior understanding (e.g., emotion recognition, elderly moni-
toring) [7,15,22]. These systems collect data from the physiological signals and
IMU (Inertial Measurement Unit) sensor and then employ a DNN model for
the intended task. However, a major challenge in achieving optimal performance
by utilizing DNN models is the requirement for a substantial volume of labeled
data as the manual annotation process is fatigue-inducing, error-prone, and time-
consuming [1,9,12|. At present time, we are surrounded by a large number of
pervasive devices (e.g., smartphones, smartwatches, loT devices) that generate
a lot of data; a majority of which remains unlabeled. Consequently, despite the
abundance of data, we are unable to fully leverage the potential of this extensive
dataset due to the substantial overhead involved in annotation. Hence, the devel-
opment of efficient strategies for annotating large volumes of data is essential.

In this paper, we aim to address the problem of automatic annotation of a
large volume of continuous sensor data streams for socially relevant problems
such as detecting wheelchair-accessible path characteristics from the built envi-
ronment using smartphone-embedded motion sensors. Wheelchair users while
undertaking their daily activities, will move through various built surfaces, such
as concrete sidewalks, asphalt, granite tiles, cobblestones, etc. in the outdoor
environment and carpet, linoleum, mosaic, etc. in the indoor environment. We
captured the vibration generated by different surfaces through the accelerometer
and gyroscope sensors in the user’s smartphone and then used a specialized Al
framework to classify the surfaces based on their characteristic vibration pat-
terns. The data collection process for this unique dataset has been extensively
documented in our previous work [25]. Often sidewalks are not accessible by
wheelchair users depicted in Fig. 1 due to obstacles such as broken/uneven sur-
faces, steep slopes, high-pile slippery cobblestones (with deep gaps in between)
as well as sidewalks with no access ramps. E.g., cobblestones are recognized as
grossly inaccessible while concrete sidewalks are considered accessible. However,
this problem is a challenging one given the numerous different types of surfaces
available in different countries as well as the different types of wheelchairs used
by the people. Several wheelchair-related parameters (such as manual or power,
tire material, weight, number of wheels, height from the ground at which the
smartphone is attached, etc.) are responsible for producing different vibration
data streams for the same surface type. Moreover, the user’s body weight, height,
and disability type can also impact the nature of vibration. Overall, it is non-
trivial to manually annotate the different types of data collected in this project
across 6 different countries on 3 different continents from 48 different surfaces
using 50 wheelchair users on 6 different manual and power wheelchairs.
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Fig. 1. Non-accessible sidewalks; surface classification required

Various annotation strategies are proposed in the existing literature. First,
self-report or expert-driven techniques are utilized wherein the signal frag-
ments are annotated by an (or a group of) experts [23], and distinct unification
approaches (e.g., majority voting [13]) are applied to come up with a single rat-
ing (or label). For example, the dataset named CASE (Continuously Annotated
Signals of Emotion) [19] involved participants who used a joystick to provide
continuous annotations of their emotions, specifically valence and arousal, based
on the Circumplex Model of emotion [16]. These approaches demand significant
user effort and are not easily adaptable to larger scales. The second approach to
annotate the signal used an auxiliary modality from a given modality [3]. In this
paper, signals from an IMU sensor are annotated automatically, leveraging the
availability of acoustic data. However, the dependency on another modality is
the major drawback of these approaches. The third approach uses a human-in-
the-loop annotation strategy that includes the concept of Active Learning. For
example, in [9,18|, a human annotator is included in the loop who recognizes a
group of seed samples (with available annotations) to train a base model, which
gives outcome for all the remaining unlabeled instances. Next, the outcome from
the model is considered depending on the model’s confidence, or the human
expert is conferred for the annotation. The key challenges include seed instance
identification, involvement of human experts, and lack of clarity (by the human
expert) in understanding the problem encountered by the learner [9,18].

However, we can design an intelligent annotation approach leveraging the
apriori knowledge from the domain experts and the intrinsic properties of the
dataset clusters to reduce human engagement significantly. Thus, we propose
the Self-SLAM (SSLAM) annotation framework to label datasets with minimal
expert intervention. The framework constitutes a self-supervised algorithm that
employs two pretext tasks developed using a contrastive sampling method [24].
We employ pretext tasks to train the encoder in a self-supervised manner, opti-
mize the resultant representations using a parameterized activation function,
and then apply a label-noise resilient log-cosh loss function for reconstruction.
Though this function is similar in structure to the standard loss functions like
Mean Squared Error (MSE) and Mean Absolute Error (MAE), it has a desirable
analytical property called Lipschitzness that helps to deal with the label noise.
This makes the proposed framework robust, and essential to ensure label quality.
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The performance of SSLAM was evaluated for two different use cases: (a)
emotion annotation and (b) surface classification. First, we evaluated label gen-
eration performance to annotate emotion continually on publicly available con-
tinuous emotion CASE [19] dataset. The dataset consists of continuous valence-
arousal annotations of emotional and physiological responses measured through
multiple sensors. SSLAM provides more accurate valence and arousal predictions
than a supervised approach leveraging unlabeled data and minimal labeled sam-
ples. It outperforms another self-supervised learning framework (VIME) [24] on
the same number of labeled and unlabeled data by 20.8% and 17.7% (for valence
and arousal, respectively).

We evaluated SSLAM on a subset of our surface vibration dataset collected
from wheelchair users. This dataset includes manual wheelchair-induced vibra-
tion data from 47 participants across 15 distinct indoor and outdoor surfaces in
the USA and China. In this dataset, SSLAM outperforms a supervised learner
and VIME by 4.25% and 7.9%, respectively, with the same amount of labeled
and unlabeled data. In summary, our paper demonstrates that SSLAM outper-
forms classical machine learning algorithms such as Logistic Regression, Multi-
layer Perceptron (MLP), and XGBoost, and a self-supervised learning algorithm
(VIME). In summary, our paper’s key contributions are:

— We proposed a self-supervised framework SSLAM to significantly reduce
annotation overhead and demonstrate improvements over the existing base-
lines using a parameterized Elliot activation function and a new loss function.

— We collected and shared a novel and unique wheelchair-induced surface
vibration dataset that enriches the available resources and facilitates further
research.

— We present a new reconstruction loss called log — cosh in the SSLAM encoder
setup, provide an explanation of its suitability as a viable alternative to MSE
loss, and highlight its implications of being robust to label noise and outliers
and its relevance to the SSLAM framework.

— We provide empirical evidence on both wheelchair and publicly available
CASE datasets to demonstrate that the proposed method is applicable for
different use cases such as surface classification and continuous emotion anno-
tation respectively.

2 Dataset Description

2.1 Wheelchair

As described in Sect. 1, the wheelchair dataset is a collection of surface-induced
vibration data caused by the movement of manual wheelchairs in both built and
natural environments. Data is collected using an Android smartphone attached
tightly to the handrest of a collapsible manual wheelchair. When participants
self-propelled the wheelchair across various surfaces, the accelerometer and gyro-
scope sensors capture the vibration at a sampling rate of 100 Hz. We collected
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Fig. 2. Surfaces used for data collection: in the USA: (a) Rough brick road with
gap, (b) Concrete sidewalk, (c) Brick road without gap, (d) Red paver block sidewalk,
(e) Asphalt surface 1, (f) Asphalt surface 2, (g) Carpet, (h) Linoleum, (i) Ceramic
tiles, (j) Up & down curbs in China:, (k) Sidewalk with red paver blocks, (1) sidewalk
with concrete paver blocks, (m) Outdoor paving tiles, (n) Embedded stone texture, (0)
Striped concrete texture (Color figure online)

data from 16 different surfaces in the USA and China as depicted in Fig. 2. Our
data collection involved 42 participants and 2 wheelchairs in the USA and 5 par-
ticipants and 1 wheelchair in China. The manual wheelchairs used in the USA
and China for data collection are presented in Fig. 3.1.

The final clean dataset includes 22 time-domain features representing vibra-
tional and gyroscopic data. Overall, we have collected 27,000 data points that
can be used for further analyses of surface classification. This dataset includes
15 surface types/classes, of which, 3 classes have a relatively less number of data
points as displayed in Fig. 3.2, making the classification task challenging. Also,
since the dataset is manually annotated, there is a possibility that the dataset
contains some amount of label noise.

2.2 CASE

The Continuously Annotated Signals of Emotion (CASE) [19] dataset contains
continuous emotion annotations provided by the participants while watching
various videos. This dataset also includes participant’s recorded physiological
reactions to the videos. These physiological measurements were synchronized
and sampled at 1000 Hz from Electrocardiograph (ECG), Blood Volume Pulse
(BVP), Galvanic Skin Response (GSR), Respiration (RSP), Skin Temperature
(SKT), and Electromyography (EMG) sensors. This dataset is based on the 2D
circumplex model of emotion that depicts different valence and arousal levels
on the coordinate X-axis and Y-axis respectively. The participants used a novel
Joystick-based Emotion Reporting Interface (JERI) on this 2D plane to report
annotations sampled at 20 Hz. The participants included 15 males and 15 females
aged between 22 and 37 from different cultural backgrounds.
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Fig. 3. (1) Chairs (a) and (b) were used in the USA, and (c) in China. Green dots
indicate where the smartphone was attached. (2) Wheelchair dataset class distribution.

(Color figure online)
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Fig. 4. CASE dataset distribution based on classes 1 and 2, representing low and high

levels of (a) arousal and (b) valence respectively.

Our final dataset consists of 8 real-valued features corresponding to the phys-
iological reactions of the participants and has two classes valence and arousal
with low (< 5) and high (> 5) levels. Also, we have converted the raw annotation
scores to low and high valence and arousal values such that they map to one of

the four quadrants of the circumplex plane [16]. Though the dataset contains
outliers as shown in Fig. 4, we demonstrate our method to be robust to label

noise and outliers.
3 SSLAM: Self-supervised Label Generation Framework

Our proposed framework incorporates a novel activation function and loss func-
tion as an improvement over the current state-of-the-art self-supervised frame-
work for tabular data (VIME) [24]. We employ two pretext tasks that are, fea-
ture vector estimation and mask vector estimation to train an encoder in a
self-supervised manner as shown in Fig.5. These tasks employ two predictors
using the input vector’s encoder representations. The task of the first predictor
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model is to recover the original input feature vector from its corrupted variant
produced using a mask vector. The task of the second predictor is to predict the
mask vector. The pretext tasks are solved using the below models,

(i) Mask vector estimator, s,, : Z — [0, 1]%, takes the encoder embedding z as
input and predicts a mask vector m.

(ii) Feature vector estimator, s, : Z — X, takes the encoder embedding z as
input and predicts X for the input feature vector x.

Mask vector estimation task uses a mask vector generator to produce a
binary mask vector m = [my,... ,md]T € {0,1}? where m; is randomly sam-
pled from a Bernoulli distribution with a probability p,,q.sx. The pretext gen-
erator g, : X x {0,1}¢ — X utilizes a mask vector m and samples x from
the large unlabeled dataset D, as input, and generates a corrupted sample x.
The corrupted feature is given by, X = gp(x,m) = mOX+ (1 —m) © x
where the j-th feature of X is sampled from the empirical distribution px, =
N%L Zfﬁ;ﬁvﬁl (x; = x; ;). The pretext generator g,, is also a stochastic function
whose randomness comes from X. Together this randomness makes reconstruct-
ing x from x a difficult task for the neural networks. The following optimiza-
tion problem, mine s, s, Exopx mmpum fimgm () [lm (M, M)+ a - 1.(x,%X)] where
m = (s, 0e)(X) and x = (s, 0e)(X), is used to train the encoder e and the
pretext predictive models.

Im(m,m) = -1 [Zj:1 m; log [(sm oe); (i)} +(1— mj> log [1 —(smoe); (5()]
is the first loss function which is the sum of the binary cross-entropy losses for each

dimension of the mask vector. The second loss function [, is the proposed novel
log — cosh reconstruction loss, [, (x,%X) = % [ijl logcosh (xj —(sroe), (5())] :
We propose a parameterized version of the Elliot activation function to be used
in the hidden layers of the encoder to yield a better representation, which is com-

: ko (W™ czi+05)-A
puted as follows: f (w}n Bj, w5, A) = k1 + 1+|EW§“ $Z+§j§>\|
the function and k; and ko are the parameters learned through back-propagation
during the training of this network.

The encoder here is a neural network that maps the input data to a fixed-
length vector representation. The multilayer neural network used by SSLAM
encoder framework has one hidden layer with a novel activation function. The
difficulty of the pretext tasks can easily be controlled through the multiple hyper-
parameters of the framework such as the probability p,..sk can be tuned to
adjust the proportion of the corrupted features. The hyper-parameter « is also
tuned to weigh the loss from the two pretext tasks. VIME [24]| has proposed
the optimal values for these parameters using cross-validation. Due to the way
the encoder has been trained, the representations z contain information about
imputing corrupt features and identifying the corrupted features. This informa-
tive representation of the input data, reduces model complexity to minimize the
losses in comparison to the raw input feature data, resulting in more accurate

predictions.

where A is the slope of
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Fig. 5. (a) Block diagram illustrating the SSLAM framework. (b) Generating labels
employing a trained encoder and predictor network.

The availability of labeled and unlabeled data is the primary consideration
for our proposed framework. We elaborate on the explanation of our frame-
work using the CASE dataset. The CASE dataset has 1.5 million instances of
annotated emotion data for valence and arousal classes. Significant expenses are
associated with annotating these data points, which we aim to reduce using our
label-generation framework. A large proportion of unlabeled data is required for
our method, thus, for our study, we split our dataset in the ratio of 1:9 labeled
and unlabeled data points. The SSLAM framework utilizes these data in the
following way: the encoder takes unlabeled data as input and converts it into
informative homogeneous representations. It is then trained to minimize the
cross-entropy and reconstruction loss functions associated with the mask and
feature vector estimation tasks respectively. To adequately recover the input
features x, we require the encoder to output latent representation z. To achieve
this, the correlation between the input features of x needs to be captured. This is
exactly what the encoder does. s,, can utilize the inconsistencies between feature
values to identify the masked features, while s, can learn from the correlated
non-masked features to attribute the masked features. The encoder, therefore,
learns that if a particular feature has a different correlation from the others, it
may be masked and corrupted.

This information is useful for the next downstream task of transforming the
remaining labeled data points into better homogeneous and informative repre-
sentations. These transformed representations are then fed into the predictive
model, to better predict the class labels of the input test data. We, thus apply
this framework to our split of unlabeled and labeled data to generate new labeled
data points. These artificially generated labels can be added back to the original
labeled set and the process can be iterated to produce more annotated data.

To summarise, our data goes through the following steps in the framework:

— Acquire labeled and unlabeled data points where the proportion of unlabeled
data points is considerably larger.
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— The encoder is fed with unlabeled data points to learn better representations
of the data by solving two pretext tasks.

— Post training, the encoder is fed with labeled data to generate a homogeneous
and informative representation for further downstream classification tasks.

— The encoder representations train a predictive model using the labeled data.

— The learned representations are then utilized to predict new class labels on
test data.

— This newly generated labeled data can be mixed with the original labeled
dataset and the process can be iterated over to produce more labels.

3.1 Log-Cosh Loss in SSLAM Framework

Mathematical Framework: We now justify the proposal of Loss, L(z) =
log(cosh(z)) in an encoder setup. Using log — cosh as the reconstruction loss
in the encoder setup is supported by additional analytical properties, such as
convexity, smoothness, robustness to outliers, etc. Let L(z) be the loss function
with x being the input to the loss function. Then for the symmetric version of
the loss function, L(z) = log(cosh(x)).

MAE and MSE as Siblings: The expression for the loss function is as fol-
lows: E(z,y) = Y.iv, log(cosh(y; — wlx;)) for training examples (x;,y;) for
Jj = 1 to m, where y; is the actual value of the 4t* training example from
the dataset. Using Taylor Series approximation it can be shown that E(z,y) =
St log(cosh(y;—wT z;)) is mathematically equivalent to Mean Absolute Error
(MAE) and Mean Squared Error (MSE) respectively for large x away from 0 or
for small x nearer to 0. Since, MSE is the preferred reconstruction loss in VIME,
we show the impact of the proposed loss function in comparison to the current
SoTA, VIME. Since, we know that MAE is 1- Lipschitz [11]. For large x, our loss
function behaves like MAE, thus we can argue that like MAE, log— cosh is robust
to outliers. Our loss function therefore inherits identical robustness to label noise
as MAE. For small x,log — cosh(x) inherits properties of MSE. Consequently,
our proposed log — cosh combines the smoothness of MSE and the robustness of
MAE, making itself highly suitable for machine learning applications such as the
self-supervised approach proposed here. This establishes log — cosh as a suitable
alternative for MSE ((similar to VIME) in the encoder setup of the SSLAM
framework.

How did the Loss Function Come About? The preceding discussion estab-
lishes the log — cosh function and explains its effectiveness in various contexts.
However, it does not necessarily prove its relevance as a reconstruction loss in the
encoder setup. The primary objective of deep learning is to gain knowledge about
the manifold structure present in the data (i.e. natural high dimensional data
that converges to a non-linear low dimensional manifold). It also involves under-
standing the probability distribution associated with the manifold. An encoder
learns low dimensional data and represents data as a parametric manifold i.e. a
piece-wise linear map from latent to the ambient space.

Logcosh(x) in VAE - A Distributional Insight: We define the encoder and
decoder as:
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— Encoder ¢ :x — F maps X to its latent representation D = ¢(X) homeomor-
phically.
— Decoder ¥: F — ¢ maps z to reconstruction & = ¥ (z) = 1) o p(x)

Y oY = argming . fx L(x,v o p(x)) dx, where y is the ambient space, F is the
latent space, L is the loss function and ¥ is a topological space ¥ C |, Us,.
We constructed distributions using pseudo-hyperbolic Gaussian, resulting in the
reconstruction loss for Variational AutoEncoders (VAEs), defined as logcosh(x),
serving as our loss function.

Pseudo-Hyperbolic Gaussian: The strategy to generate the pseudo-
hyperbolic Gaussian ((Wrapped gaussian distribution G(u,>) on hyperbolic
space H)) is as follows:

— Sample a v from normal distribution N(0,X) defined over R"™.

— Interpret v as an element of 7,H" C R"*! by rewriting v as v=[0,v].
Parallel transport vector v to uw € T, H" C R"*! along the geodesic from g
to .

Map u to H” using exp(u) = cosh(||ul|r) + sinh(||u||L)

u
lullr

Reconstruction Loss is thus —E,__log(pe(z|2)). Replacing py(z|z) with pdf
of Hyperbolic secant distribution: = —log(2sech(ZL)) = log(2cosh(ZE)) =
log(cosh(y)) where y = ZF. Since the metric at the tangent space coincides
with the FEuclidean metric, several distributions can be produced by applying
the construction strategy such as logcosh(x).

4 Evaluation

4.1 Experimental Configuration

To evaluate the performance of SSLAM, we test it on two tabular datasets from
the domain of affective computing: CASE and wheelchair. For all our experi-
ments, we randomly divide our dataset into an - (a) 85-15% and (b) 80-20%
train-test split. Later, we split our training data into 10-90% labeled and unla-
beled data. We evaluate our proposed model against four baseline models, three
of which were used as baselines in VIME. SSLAM is different from a classical
supervised classification problem and therefore most of the SOTA baselines don’t
apply to the setting proposed here. The first baseline model is a simple MLP
trained using only labeled data in a supervised manner. Our second baseline is
a simple logistic regression model. XGBoost, a tree-based classification method
is our third baseline. Our final baseline is a self-supervised model VIME [24]
with state-of-the-art performance results for classification tasks in the tabular
domain. The self-supervised models are pre-trained on the unlabeled data and
used along with the labeled data for classification tasks.

We have used the same encoder architecture in SSLAM as in VIME as
depicted in Table1l. Based on the experiments conducted in VIME we have
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Table 1. Architecture details of SSLAM

Module Layer Details Layer Dimensions

Input - 8 x1

Encoder [dense| x 1 + Parameterized (8,8)
Elliot

Feature vector [dense] x 1 + Linear (8,8)

estimator

Mask vector [dense] x 1 + Sigmoid (8,8)

estimator

Predictor [dense] x 1 + ReLu (8,100)
[dense| x 4 + ReLu (100,100)
[dense] x 1 + Sigmoid (100,2)

Output - 2

tuned the model parameters p,,.sx and « to 0.3 and 2 respectively. The acti-
vation function corresponding to the feature vector estimation is set to linear
activation function whereas the layer corresponding to mask estimation has a
sigmoid activation function. The reconstruction loss and mask estimation loss are
the novel log — cosh and binary cross-entropy losses respectively. The encoder
is trained using an RMSprop optimizer with a learning rate of 0.001 on both
loss functions. Our baseline Multilayer Perceptron (MLP) and feedforward neu-
ral network (FNN) used in the predictor network has five hidden layers each
with hidden dimension 100. These hidden layers are set to have a ReLLU acti-
vation function while the output layer has a Softmax activation function. Both
are trained using an Adam optimizer with a learning rate of 0.001 on the cate-
gorical cross-entropy loss function. The supervised feedforward neural model is
fine-tuned with early stopping (patience 50), and we allocate 10% of the training
data as the validation split. All models are trained with a batch size of 128. We
train the feedforward neural predictor network for 100 epochs and the encoder
for 10 epochs. To enhance our model’s performance, we utilized a parameterized
Elliot activation function in the encoder.

Fine-Tuning Hyperparameters: We have performed several experiments
with varying the hyperparameters of the predictor FNN on both datasets. First,
we conducted experiments to vary the dimensions of the hidden layers in the
FNN to 100 and noted its performance for the classification tasks as shown in
Appendix A.1. We found that for both datasets used in this study 100 neurons
in the hidden layer is the best choice. To avoid incurring high computational
costs, we do not exceed this number.

Next, for each dataset, we experiment with the number of hidden layers in
FNN. Figure in Appendix A.1 and Table 2 indicate that 5 is the optimal choice
for both CASE and wheelchair datasets. Again, we restrict our experiments to
5 layers. Ultimately, this study aims to illustrate the comparative performance
of the proposed model over the baselines on both datasets, which is achieved by
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Table 2. Performance comparison for different number of layers for each of the datasets

Datasets Number of Hidden Layers

1 2 3 4 5)
CASE: Valence|77.2329/82.1172/86.0457/87.5545/90.0178
CASE: Arousal 76.8658/82.1246|85.4126/87.2266/89.7985
Wheelchair 61.6047|64.7465/65.8745/66.1679(71.6529

------- Supervised — SSLAM : VIME ------- Supervised — SSLAM VIME

Valence Accuracy
~N
a

70

o 20000 40000 60000 80000 100000120000 (o] 20000 40000 60000 80000 100000120000
Number of labelled samples Number of labelled samples

Fig. 6. Comparison of Accuracy of predictions of (a)Valence and (b)Arousal across
different sizes of labeled CASE dataset made by SSLAM and other baselines.

our experimental setup. We have executed each of the models 5 times utilizing
different random train/validation/test splits and seeds and the average of these
results has been reported. As with previous studies on tabular data, we use
accuracy as our evaluation metric in all experiments.

4.2 Results: CASE Dataset

In this section, we will be discussing the results of the SSLAM on the CASE
dataset, and we will also be comparing its performance with the baselines that
we had defined earlier. The classification results of Valence and Arousal accuracy
on 85-15% train-test split are indicated in Table 3. The MLP baseline produces
81.3% accuracy for Valence, which is better than logistic regression, XGBoost
and VIME. But, our proposed framework vastly outperforms these baselines, pro-
ducing an accuracy of 90.01%. Also, SSLAM outperforms all of these baselines
including VIME for Arousal by generating an accuracy of 89.79%. We obtain
similar results on the 80-20% split as displayed in Table 3 with SSLAM outper-
forming all baselines on both Valence (89.49%) and Arousal (88.84%). In Fig. 6,
we compare the performance of (valence and arousal prediction accuracy) of a
supervised MLP, VIME and SSLAM against the increasing number of labeled
data points (x-axis). The proposed approach (SSLAM) outperforms both the
baselines, i.e. the supervised MLP and the self-supervised VIME on the CASE
dataset.
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Table 3. Comparison of Accuracy for predicting Valence and Arousal on CASE dataset
using the 85-15% and 80-20% splits

Model Type Accuracy using 85-15% split Accuracy using 80-20% split
Valence Arousal Valence Arousal

MLP 0.8130 4 0.0040 |0.7993 + 0.0013 | 0.8034 4+ 0.0021 |0.7911 + 0.0057

Logistic Regression| 0.6901 + 0.0012 |0.6806 + 0.0010 | 0.6877 + 0.0028 |0.6899 + 0.0025

XGBoost 0.7330 4+ 0.0009 |0.7339 + 0.0022 | 0.8467 4 0.0041 |0.7343 4+ 0.0015

VIME 0.6917 £+ 0.0051 |0.7213 4+ 0.0042 | 0.7197 + 0.0027 |0.7093 + 0.0027

SSLAM 0.9001 + 0.0024/0.8979 + 0.0045/0.8949 + 0.0046/0.8884 + 0.0073

Table 4. Comparison of Accuracy for predicting Valence and Arousal on Wheelchair
dataset using the 85-15% and 80-20% splits

Model Type 85-15% split 80-20% split
Accuracy F1 score Accuracy F1 score
MLP 0.6740 4+ 0.0211 |0.6704 £ 0.0054 | 0.6347 4+ 0.0294 0.6309 + 0.0231
Logistic Regression| 0.4463 + 0.0020 |0.4063 £+ 0.0012 | 0.4307 £ 0.0054 |0.4237 + 0.0073
XGBoost 0.6305 4+ 0.0089 |0.6304 + 0.0029 | 0.6216 4+ 0.0019 |0.6193 + 0.0147
VIME 0.6366 + 0.0393 |0.6065 £+ 0.0381 | 0.6283 £ 0.0317 |0.6267 + 0.0318
SSLAM 0.7165 + 0.0054/0.7120 4+ 0.0067/0.7074 + 0.0059/0.7040 + 0.0093

4.3 Results on Wheelchair Dataset

We have used the same experimental setup for the Wheelchair dataset analysis as
for the CASE dataset. The comparison outcomes of our model with the baselines
on the wheelchair data for the 85-15% and 80-20% splits are presented in Table 4.
We observe that the SSLAM model outperforms all other baselines for both train-
test splits. SSLAM achieves an accuracy of 71.65% on the 85-15% split, while on
the 80-20% split, it achieves an accuracy of 70.74%. The wheelchair dataset has
unbalanced classes; thus, we also report the weighted F1 score. From the above
two tables, it is clear that the F1 score represents a similar trend where SSLAM
outperforms the other two baselines.

In the case of the wheelchair dataset, all the models have performed poorly
due to the limited size of the dataset. For all our models we use the same amount
of labeled and unlabeled data. Results from the CASE dataset demonstrate that
as we increase the number of unlabeled samples, the encoder’s representations
improve thus resulting in optimal classification accuracy. The wheelchair dataset
is relatively small in size, which means that the number of unlabeled samples
(< 100,000) is not enough to help the encoder generalize well and learn good
representations of the inputs. As a result, the performance of the models is
not significantly improved. Additionally, the dataset’s class imbalance problem
further hinders the model’s performance.



136 A. M. Shaikh et al.

5 Discussion

We demonstrated that the SSLAM framework outperformed other baselines on
both datasets. Our proposed methodology is best suited when dealing with large
amounts of unlabeled data where annotating the data is tedious and expensive.
This is often the case in real-world scenarios such as annotating surface-induced
vibration data for wheelchair users and emotional data from physiological sen-
sors. Thus, SSLAM can efficiently be employed to generate meaningful repre-
sentations from the unlabeled samples and to generate labels reducing large
annotation overhead.

The Role of log — cosh in SSLAM: is evident from the performance of the
framework in comparison to the standard MSE in the encoder set-up. The use
of log — cosh delivers significant improvements across both datasets - CASE and
Wheelchair. The largest increase in performance has been observed in the CASE
dataset. This dataset has an outlier problem and log — cosh being robust to
outliers overcomes this considerably.

6 Relevant Literature

We discuss our research literature in three parts: continuous emotion annotation
techniques and their drawbacks, limited data annotation emotion recognition
methods, and the effectiveness of different self-supervised approaches on tabular
data.

Continuous Emotion Annotation: In the existing literature, the most widely
adopted approach of emotion annotation using self-report is the post-interaction
or post-stimuli one, where the participants after watching the video provide
emotion self-reports based on a standard scale (e.g., Self-assessment Manikin
(SAM) [2]). However, in the post-stimuli approach capturing intra-video sub-
tle nuances and time-aligning all the emotions is challenging. To address these
issues, researchers use continuous emotion annotation strategies, where partici-
pants continuously provide emotion annotations as they watch the videos using
a mouse, a joystick or another similar device [5,8,28|. Similarly, the CASE [19]
dataset involved participants who used a joystick to provide continuous annota-
tions of their emotions, specifically valence and arousal, based on the Circumplex
Model of emotion [16]. Yet, the challenges with these approaches are the follow-
ing - (a) for emotion annotations they require the users to utilize an auxiliary
device, (b) due to the continuous nature of emotion annotation and video con-
sumption in parallel, the cognitive load increases and the viewing experience
degrades.

Recognizing Emotions with Limited Data: Numerous studies in affective
computing have attempted to tackle the issue of the restricted availability of
labeled data. Chen et al. (2021) [4] proposed a CNN method to tackle the prob-
lem of limited samples and imbalanced datasets for emotion recognition on the
DEAP dataset through a data augmentation algorithm called the Borderline-
SMOTE. They achieved a performance of 97.47% and 97.76% on valence and
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arousal prediction tasks. Zhang et al. (2022) [29] address the issue of data scarcity
in EEG data by proposing a data augmentation method called generative adver-
sarial network-based self-supervised data augmentation (GANSER) to perform
emotion recognition. Their model synthesizes simulated EEG signals that do
not skew from the underlying data distribution, which helps to perform well
on emotion classification tasks. SigRep [6] produces performances for arousal
(76.3%) and valence (74.1%) accuracy through a contrastive learning-based self-
supervised technique using the data obtained from wearable devices. Tianyi et
al. (2020) [27] propose a correlation-based emotion recognition algorithm (Cor-
rNet) that employs an autoencoder to perform automatic feature extraction of
signals generated by wearables. The model proposed by Tang et al. (2017) [21] for
valence and arousal emotion classification on SEED and DEAP datasets used a
denoising autoencoder. Subramanian et al. (2018) [20] learn features from elec-
trocardiogram (ECG) data using a Naive Bayes classifier and Support Vector
Machine (SVM). Sarkar et al. (2022) [17] propose a self-supervised multi-task
CNN framework to learn ECG representations using pretext tasks.
Self-supervised Learning on Tabular Data: Some recent approaches pro-
pose using self-supervised learning techniques that utilize existing unlabeled
data to discover broad feature representations specific to the data. In computer
vision [10,26] and language modeling tasks [14], these approaches have proven
to be fairly successful due to the underlying spatial, syntactic or semantic struc-
ture of the image or language data. Regardless, these approaches are not very
effective for tabular data and sparse literature exists on handling tabular data
using these methods. Recent studies focus on solving pretext tasks. Yoon et al.
[24] proposed a self-supervised framework called Value Imputation and Mask
Estimation (VIME) which employs two pretext tasks to train an encoder. The
pretext generator is fed a random binary mask and unlabeled tabular data sam-
ples. This setup results in unlabeled samples that are corrupted by the mask.
Given the corrupted heterogeneous inputs to the encoder, it is trained to gener-
ate informative homogeneous representations. In this architecture, the encoder
representation of the data is fed into the mask and feature estimators, which
predict both the binary mask and the original uncorrupted input. These learned
transformed representations are further provided to the predictive model to per-
form the main downstream task.

7 Conclusion and Future Works

We presented a framework SSLAM for self-supervised label generation for anno-
tation overhead reduction. The framework trains an encoder in a self-supervised
manner by implementing two pretext tasks using a contrastive sampling method.
The structure of VIME inspires our approach, but we distinguish ourselves by
employing a novel loss function (log — cosh) compared to the denoising auto-
encoder loss used in VIME in the pre-training phase. Also, in the pre-training
phase, we employ the parameterized Elliot activation function in the encoder to
generate better representations to ensure more accurate predictions. Since we
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present our model as an improvement over the VIME, we have employed the
same baselines used in VIME. Also, we are comparing against VIME because
it is the state-of-the-art method. The other SOTA methods are applicable on
vision data (such as MixMatch and ReMixMatch). Therefore the efficacy of the
proposed method is best compared with VIME.

We evaluated the framework to determine its effectiveness in reducing the
continuous annotation overhead on two datasets: wheelchair and CASE. The
framework showed better results compared to the state-of-the-art self-supervised
approach and the supervised approach. We also observed that the framework
can generalize across different use cases, as demonstrated in a large-scale surface
classification dataset for wheelchair users. Additional experiments on KEmoCon,
MNIST and Fashion-MNIST datasets produce similar SOTA results. Along with
further theoretical considerations, we defer the additional details on the gener-
alizability of SSLAM to future work.

In summary, our SSLAM provides superior performance over existing base-
lines in label generation, particularly when more unlabeled data is available. We
attribute this improved performance to our novel reconstruction log — cosh loss
that is employed by the encoder. The study results demonstrate the approach’s
potential to reduce annotation overhead in scenarios with imbalanced labeled
and unlabeled data.
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