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Abstract—Over the years, researchers have explored various
approaches for capturing and monitoring the eating activity, one
among which is via Wi-Fi channel state information (CSI). CSI-
based approaches commonly rely on multi-antenna systems for
the capturing and monitoring tasks. With the advent of low-cost,
single-antenna IoT devices with CSI measuring capabilities, a
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monitor human activities? In this paper we present the SandDune
system that demonstrates the possibility of monitoring one human
activity — eating — using only inexpensive single-antenna Wi-
Fi devices. SandDune is an infrastructure-based system that
continuously monitors CSI information to detect the eating activity
occurring in its vicinity. When it detects an eating activity, it
scrutinizes the signals further to identify all hand-to-mouth eating
gestures in the eating episode. We tested SandDune and observed
that SandDune can distinguish eating from other activities with
an Fl-score of 85.54%. Furthermore, it can detect the number of
hand-to-mouth gestures that occurred in the eating episode with
an error of £3 gestures. Overall, we believe that a SandDune-like
system can enable low cost, unobtrusive eating activity detection
and monitoring with potential use-cases in several health and
well-being applications.
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I. INTRODUCTION

There has been a recent interest in using the pervasive RF
channel (e.g., Wi-Fi) for sensing various human activities [1].
The RF channel properties are studied and monitored using
Channel State Information (CSI). Specifically, CSI provides
an understanding of the characteristics of the communication
channel as the signal propagates from a wireless transmitter to
a receiver [2]. Since Halperin’s tool release in 2011 [3], CSI
has been available for Wi-Fi. Because of Wi-Fi’s ubiquity and
availability in numerous wearable and Internet of Things (IoT)
devices, researchers have used these devices for various human
activity recognition (HAR) tasks, including the eating detection
task [4]. CSI-based eating detection primarily focuses on using
expensive multi-antenna devices [5]. Because of their size and
cost, such systems might not be usable in everyday scenarios.
Thus, low-cost systems are needed that can be deployed to
pervasively and unobtrusively capture information related to
a person’s eating habits in everyday scenarios. To fulfill this
need, we have developed a low-cost, usable, ubiquitous Wi-
Fi-based system — SandDune — that uses CSI information to
detect fine-grained eating-related details.

The SandDune system consists of two or more low-cost
(each costing less than $5) ESP32-S devices [6]. One device
transmits a Wi-Fi frame, and one device receives the frame. The
transmitter-receiver pair are placed 1 meter apart. The receiver

§
2
0

ESP32-S (AP): | Classification ;

H2M gesture count

Fig. 1: High-level system overview of SandDune. SandDune
consists of a coarse-grained eating detection module, and a
fine-grained hand-to-mouth (H2M) gesture counting module.

continuously captures the transmitted Wi-Fi packets to extract
the channel state information. The receiver then passes this
data to an eating detector module that determines whether a
person is eating. When the module detects eating, the temporal
data is passed to the H2M Detector, which determines the
number of hand-to-mouth gestures in the eating episode. The
system details of SandDune is presented in Figure 1.

Developing a CSl-based eating detection system has its
challenges. First, having multiple antennas at the transmitter
and receiver allows capturing information in spatial, temporal,
and frequency domains [4]. A single-antenna device can only
rely on temporal and frequency variations to detect the eating
activity. Second, a person might perform various activities near
the devices. SandDune should be capable of distinguishing
eating from these other activities. Third, individuals might have
diverse postures while eating and can consume food at different
speeds. SandDune should be robust to such differences.

We have developed SandDune, a single-antenna device-based
fine-grained eating recognition system that addresses these
challenges. In this paper, we aim to answer the following
research questions: RQ1: Can we use SandDune to distinguish
the eating activity accurately from other activities? and RQ2:
Can we use the detected eating moments captured to compute
the count of hand-to-mouth gestures? While addressing these
challenges we make the following key contributions:

« We have developed the SandDune system that is capable of
capturing fine-grained details of the eating activity using
CSI data. In this paper, we describe the design details and
the system-level choices made while realizing the system.

o We conducted a user study to determine the feasibility
of detecting the eating activity and obtaining fine-grained
details of the eating episode. Overall, we observed that
we could distinguish eating from other activities with a
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F1-score of 85.54%. Within the eating activity, we could
detect the hand-to-mouth feeding gestures with an error
of +3 gestures in an eating episode.

II. RELATED WORK

To detect the eating activity automatically, researchers have
experimented with various techniques, including the Wi-Fi
based approach [5], [7]-[9]. The possibility of extracting CSI
using various toolkits has increased the number of Wi-Fi CSI-
based sensing applications [3]. This is further proliferated due
to easy access to hardware such as the (now discontinued)
Intel 5300 Wi-Fi card that provides CSI. Researchers have
used Wi-Fi CSI for detecting activities that the humans are
performing [4]. These activities are either general everyday
physical activities or more complex activities such as shopping
activity monitoring [10]. Cominelli et al. studied CSI-based Wi-
Fi to understand sensing capabilities and limitations [11]. They
explored several prior studies that performed human activity
recognition, and then proposed a common multi-activity dataset.
This dataset did not cover the eating activity, however. Lin
et al.’s work on Wi-Fi CSI-based eating activity monitoring
demonstrates the possibility of detecting the eating activity,
and extracting fine-grained details about the activity [5]. Their
work, however, relies on a multiple-antenna setup, along with
a smartphone for the detection. Deployment complexity of the
system and its cost makes it difficult to deploy this system in
a free-living study. Researchers have also explored expensive
multi-modal sensing approaches for HAR, including CSI [12].
In comparison to these systems, SandDune, with two single-
antenna microcontrollers is a low cost eating detection solution.

III. SANDDUNE: DESIGN AND WORKING

The architecture of the eating detection system — SandDune —
is shown in Figure 1. We envision the system to consist
of multiple pairs of low-cost, single-antenna microcontroller
devices, the ESP32-S, capable of collecting CSI continuously
from the Wi-Fi signal. One such pair is shown in block @

The ESP32-S devices’ Wi-Fi connectivity can be configured
in two modes — Wi-Fi Access Point (WiFiAP) mode and Wi-Fi
Station Device (WiFiSTA) mode. In the WiFiAP mode, the
device can receive incoming connections from other devices.
In SandDune, for any pair of ESP32-S devices, one ESP32-
S is configured as a WiFiAP — the AP device, and the other
ESP32-S device as a WiFiSTA — the STA device. The WiFiSTA
device is attached to a more powerful edge device — a laptop.
It can extract the CSI data and transfer the data to the laptop.
Block presents the details of the WiFiSTA module.

The edge device executes the eating detector module (a
classic machine learning pipeline) on the CSI data to determine
whether a frame represents the eating activity. SandDune cur-
rently uses a shallow learning model with hand-crafted features
for eating detection at a frame level. Multiple continuous eating
frames are collected together to determine an eating episode.
Block @ in Figure 1 presents the eating detection module.

An eating episode is then passed over to the H2M detector
module (hand-to-mouth detector module). This module analyzes
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the amplitude of various subcarriers of the signal. It performs
peak detection on the data (a peak represents the feeding
activity). Via this module, the system obtains the fine-grained
details of the eating activity. This information can then be
passed to the concerned person (e.g., the individual, or a
clinician). Block in Figure 1 presents the H2M detector.

IV. METHODOLOGY

SandDune’s goal is to detect fine-grained details of the eating
activity that occurs between the ESP32-S device pairs.

Data Collector: The Espressif IoT Development Framework
(ESP-IDF) allows programs to obtain the CSI data. SandDune
uses a modified version of Hernandez et al.’s toolkit for
collecting the CSI data [13]. The toolkit provides 128 non-
STBC HT-LTF subcarrier CSI information in the 40 MHz
channel, from which we used data from the 114 important
subcarriers between +57 and —57 subcarriers.

The toolkit allows configuring the WiFiAP and WiFiSTA in
both active transmitting and passively receiving modes. The
device configured as WiFiSTA continuously sends requests to
the WiFiAP device at 200 frames per second. On receiving
the request, the WiFiAP sends a frame with pre-determined
pilot symbols. The WiFiSTA captures this frame and extracts
the CSI data. The data received by the WiFiSTA is transmitted
through the serial port to a more powerful computing device,
where it is further processed.

Eating Detector: A code running on the computing device
extracts the phase and amplitude information from the raw CSI
data for each subcarrier. We observed that we could not derive
any meaningful information from the phase information, and
thus SandDune does not use it for further computation. Instead,
SandDune uses only amplitude.

Framing: Human activities have a temporal aspect. Creating
windows of sequential data allows capturing this temporal
aspect of the activity. SandDune uses the data from the S
subcarriers to create F' windows of n seconds each with k%
overlap between windows. We use the value S = 114, n = 5,
and k = 50% in our implementation. Thus, at the end of
this framing step, SandDune obtains F' windows of length 5
seconds, and width of 114 subcarriers.

Subcarrier-wise feature extraction: Next, SandDune com-
putes four statistical features of mean (%), median (z), standard
deviation (o), and slope (m) for each subcarrier of a window
f € F separately. Thus, at the end of this step, SandDune
obtains a vector of size 114 x 4 = 456 features for each f. It
uses these 456 features for further computation.

Classification: The prepared data is then fed into the
classification module that performs a binary classification
between eating and other activities. We experimented with
both shallow learning and deep learning approaches to evaluate
SandDune. For shallow learning, we used Random Forests,
Support Vector Machines and XGBoost. The scikit-learn’s
implementation of Random Forest and Support Vector Machine
(tested with four different kernels — linear, sigmoid, polynomial
and radial-basis function(RBF)) was utilized. For the deep
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learning model, we implemented an Multilayer Perceptron
(MLP) using building blocks from scikit-learn. MLP is a
feedforward artificial neural networks consisting of an input
layer, one or more hidden layers, and an output layer. Each
layer contains neurons with nonlinear activation functions. Our
model consisted of 5 layers, with first input hidden layer of
size 256, followed by hidden layer sizes of 128, 64 and 16
respectively. ReLU activations is applied on the outputs.

Smoothing: Eating is a longitudinal process; a person might
perform non-eating gestures in between the eating gestures. The
process of smoothing allows detecting the entire eating episode
duration, even when non-eating gestures occur in between the
eating gestures. Vf € {x,...,yly > x} if at least t% windows
are classified as eating, SandDune identifies the entire duration
[fz, fy] windows as eating.

Hand-to-mouth (H2M) detector: All [f,, f,] windows
identified as ‘eating windows’ are passed to the H2M detector
module. H2M aims to determine the number of hand-to-mouth
gestures that occur during the eating episode. We observed that
the hand-to-mouth gesture resulted in more disturbance to the
subcarriers, causing observable peaks in the amplitude of the
signal. Thus, we suspect (and as evident from our evaluation
in Section VI) that counting the number of peaks would allow
detecting the number of hand-to-mouth gestures.

SandDune computes the amplitude peaks for the 114
subcarriers. It uses an off-the-shelf peak detection algorithm
that returned peaks in each subcarrier signal, based on the
height threshold and prominence [14]. The height threshold
for each user is calculated as the mean of the amplitude values
computed by applying a simple moving average to a window
size empirically chosen for our data set.

To determine peaks in the signal, the peak detection
algorithm first identifies local maxima and retrieves their
indices, along with the left and right edges of these peaks.
It applies a height threshold to focus on significant peaks,
effectively filtering out those caused by noise. Next, the
algorithm calculates the prominence of the remaining peaks
and further filters them using a prominence threshold of 1.5
(chosen empirically for our dataset). Finally, it ensures that the
peaks are separated by the defined minimum distance before
returning the indices of the remaining peaks along with their
associated properties including peakheights, prominences,
leftbases and rightbases. However, sometimes two peaks
might reside close by in time. SandDune groups all those
peaks which occurs within a threshold distance together into
one single eating gesture. At the end of this step, SandDune
returns the number of peaks in each subcarrier.

SandDune determines the number of peaks in the eating
episode by two approaches — the mean peak approach, and
the median peak approach. For the mean peak approach, it
computes the statistical mean of the peak output of the 114
subcarriers, while for the median peak approach, it computes
the median of those subcarriers. Overall, SandDune determines
the number of episode-wise eating gestures based on the output
of the mean peak approach or the median peak approach, as
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discussed in Section VI.

V. DATA COLLECTION AND EVALUATION APPROACH

We conducted a controlled study where participants per-
formed various everyday activities (Eating, Sitting, Walking,
and Using Phone) in a controlled setting. Overall, we collected
594,734 data frames in the user studies.

A. Deployment and Data Collection

Data collection was performed in a controlled setting —
a 1.1 meter x 1.4 meter table in the home of one of the
authors. We placed two ESP32-S at a fixed position on the
table, separated from each other by 1 meter; both placed 10
centimeters from the edge of the table and powered by the
USB port of a laptop. One ESP32-S executed the WiFiAP code,
while the other executed the WiFiSTA code. A script running
on the laptop continuously gathered data from the serial port
to which the WiFiSTA was connected. The same script also
started the camera of the laptop so that we could capture the
video of the person for ground truth purposes.

For the study, we recruited 10 participants (9 right handed,
aged between 25 and 30 years). The participants visited the
location where the SandDune system was deployed. Participants
were instructed that they would perform four activities — sit
comfortably on the chair between the deployed ESP32-S pair,
use a phone while sitting on the chair, walk in the vicinity of
the two ESP32-S, and eat rice or noodles from a plate using a
spoon. Participants performed each activity for 7 minutes. We,
however, removed the first and last 30 seconds of data to filter
out the disturbances caused from movements to start and stop
the experiment, resulting in a 24 minutes of data collection for
each study participant. From the laptop’s videos, we observed
that one participant did not eat with the spoon, but rather fed
themselves using their hand. We discarded that participant’s
data, leaving us with data from 9 participants.

B. Evaluation Technique and Metric

RQ1: To determine whether SandDune could distinguish
eating from not eating, we performed leave one person
out cross validation using Synthetic Minority Over-sampling
TEchnique (SMOTE) because there was a class imbalance —
our dataset consists of 25% eating activity and 75% not-eating
activities. We report the Fl-score, precision and recall for
eating activity detection in Section VI.

RQ2: To determine the number of hand to mouth gestures, we
computed the mean and median of peaks identified by the 114
subcarriers. We compute the difference between the ground
truth (obtained from the video data) and the mean/median peak
to determine the difference in performance.

VI. RESULTS

As mentioned in Section IV, we collected the data obtained
from the receiving ESP32-S. Empirically, we observed that the
receiver received an average of 60 readings in a second (of
the 200 frames transmitted).
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Classifier % Precision  %Recall ~ %F1-Score
SVM (Linear) 87.24 86.51 85.54
SVM (Poly) 82.18 81.73 79.81
SVM (RBF) 80.05 80.26 75.54
SVM (Sigmoid) 63.22 62.32 55.25
Random Forest 85.31 80.42 77.12
XGBoost 84.10 78.46 74.33
Multi Layer Perceptron 83.5 76.64 73.02

TABLE I: Performance metrics for classifiers in leave-one-
person-out validation using SandDune.

1) [RQI1] Eating versus other activities: We performed
a leave-one-person-out cross validation on the dataset to
determine the performance. In our dataset, we have 25% eating
activity data, and 75% other activity data. After applying the
SMOTE technique, our model’s class distribution was balanced.

To evaluate the performance of classifier we created windows
of 5 seconds each and formed sliding windows of 30 seconds.
For the smoothing step, we used the threshold value as ¢t =
20% i.e. if number of eating instances are more than the
threshold that window is classified as eating. Table I presents the
performance of various classifiers for distinguishing eating from
other activities using a leave one person out cross validation.
Out of the shallow learning classifiers, SVM with linear kernel
performs best for identifying eating activity with precision
87.24%, recall 86.51%, and F1-score 85.54%. We used the
MLP deep learning classifier and it resulted in precision 83.5%,
recall 76.64%, and F1-score 73.02%. The lower performance
might be because of the small dataset or because of the currently
chosen architecture for model building.

2) [RQ2] Detecting number of hand-to-mouth gestures: We
passed all sub-carriers of each eating episode in the dataset
to the peak detection algorithm to estimate the number of
peaks. As mentioned previously, we computed two types of
peaks — the mean and median peaks. Figure 2 presents the
estimated (both mean-peak and median-peak) and actual hand-
to-mouth gestures detected for each participant. From the figure
it is visible that the median number of peaks detected for a
participant for all the 114 subcarriers is more comparable to
the number of actual gestures. The mean absolute error for
number of peaks estimated using the median peaks approach is
=+3, indicating that it is indeed possible to use a single antenna
device to detect fine-grained details of the eating activity.

VII. CONCLUSION

In this paper, we demonstrate that rather than using expensive
and complex systems, low-cost, single-antenna microcontrollers
can detect the eating activity. We present the design of our
developed system, SandDune. Overall, we observed that CSI
data from a single-antenna device can enable detecting the
eating activity with an F1-score of 85.54%. Furthermore, the
system can count the number of hand-to-mouth gestures with an
error of £3 gestures. This shows that such a system can enable
low cost unobtrusive eating activity monitoring. In future, we
will explore approaches to improve the performance of the
system by deploying multiple devices.
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Fig. 2: Comparison of median peak detection approach and
mean peak detection approach with the ground truth.
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