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Let’s assume a scenario, 

■ An HCI researcher plans for a long-term user study

● for emotion self-report collection

Motivation and Background
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During the study, 

■ some participants drop out in between 

Motivation and Background

3



During the study, 

■ some participants drop out in between 

■ therefore, the researcher needs to discard data from 
these participants

Motivation and Background
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Can we develop efficient approaches to counter the 
data loss? 

■ without rerunning user study

● incurs cost (time, effort) 

■ without using any additional sensor details

● incurs energy, raises privacy concerns

Research Question
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MUSE: Multi-task Learning 
Framework for User 
Similarity based Emotion 
Self-report Estimation

■ estimate missing emotion 
self-reports of drop-out 
participants

MUSE: MTL for Emotion Self-report Estimation

MUSE: MTL framework for emotion self-report estimation
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Why MTL?

■ Allows to learn multiple 
(similar) tasks at the same 
time (even with limited 
data from individual task)

■ Every user → a task

MUSE: MTL for Emotion Self-report Estimation

MUSE: MTL framework for emotion self-report estimation
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MUSE: Multi-task Learning Framework for User Similarity 
based Emotion Self-report Estimation

■ estimate missing emotion self-reports of drop-out 
participants

● quantify emotion self-report behvaior

● Self-report estimation modeling

MUSE: MTL for Emotion Self-report Estimation
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■ 24 participants (20M, 4F) → university 
students

■ Reported four emotions using the UI 
as shown

● Happy, sad, stressed, relaxed

● 6-week study

● Total self-reports: 5677

User Study I: Homogeneous Population

Self-report UI

Circumplex model
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■ Self-report quantification

● Emotion transition

● Emotion persistence

● Emotion recurrence length

User Study I: Homogeneous Population
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■ Self-reporting similarity

User Study I: Homogeneous Population

Emotion transition 

similarity

Persistence period 

similarity

Sequence length 

similarity
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■ Self-reporting characteristics: Emotion discrimination

User Study I: Homogeneous Population

Emotion transition probabilities 

across emotions

Persistence time 

comparison

Sequence length 

comparison
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■ Self-reporting modeling: MTL network

● Every task → user

○ Shared layer

○ Task-specific layer

User Study I: Homogeneous Population
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■ Performance evaluation

● Overall mean AUCROC → 84% (SD: 18%)

User Study I: Homogeneous Population

User-wise AUCROC Emotion-wise AUCROC
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■ 30 participants (16M, 14F)

■ Diverse profile

● Geo location, qualification, 
background

■ Reported same four emotions

● 8-week study

● Total self-reports: 7314

User Study II: Heterogeneous Population

Self-report UI
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■ Performance evaluation

● Overall mean AUCROC → 82% (SD: 14%)

User Study II: Heterogeneous Population

User-wise AUCROC Emotion-wise AUCROC 16



■ Smartphone keyboard based emotion detection

● Extract typing features

● Correlate them with emotion self-reports

○ happy, sad, stressed, relaxed

● Develop ML model for emotion inference

Utility of MUSE: Downstream Application

App keyboard Self-report UI 17



■ Evaluation

● Scenario I: Original self-reports are used

● Scenario II: Estimated self-reports (by MUSE) are 
used 

Utility of MUSE: Downstream Application

No significant difference in

emotion detection F-score, if

estimated self-reports are used to

train the model
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■ Proposed MUSE

● Multi-task Learning Framework for User 
Similarity based Emotion Self-report Estimation

○ Self-report quantification

● Evaluated with two large-scale user studies

● Efficient in downstream task for smartphone 
keyboard based emotion detection

Conclusion
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More details about the paper,

▪ https://doi.org/10.1145/3613904.3642833

Thank You!!

20https://surjya-ghosh.github.io/
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MUSE: Multi-task Learning Framework for User Similarity 
based Emotion Self-report Estimation

■ quantify self-reporting behavior
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MUSE: Multi-task Learning Framework for User Similarity 
based Emotion Self-report Estimation

■ apply MTL (Multi-task Learning) for self-report estimation
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Probable solution, 

■ rerun user study (to counter data loss)

● incurs cost (time, effort) 

Alternate solution

■ Estimate the missing self-reports accurately
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MUSE: Multi-task Learning Framework for User Similarity 
based Emotion Self-report Estimation

■ estimate missing self-reports of drop-out participants
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MUSE: Multi-task Learning Framework for User Similarity 
based Emotion Self-report Estimation

■ estimate missing self-reports of drop-out participants
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MUSE: Multi-task Learning Framework for User Similarity 
based Emotion Self-report Estimation

■ quantify self-reporting behavior
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MUSE: Multi-task Learning Framework for User Similarity 
based Emotion Self-report Estimation

■ apply MTL (Multi-task Learning) for self-report estimation
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Experimental evaluation

■ Estimate four emotions (happy, sad, stressed, relaxed)

■ Study I (N=24) → AUCROC of 84%

■ Study II (N=30) → AUCROC of 82%
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More details about the paper,

▪ https://doi.org/10.1145/3613904.3642833

Thank You!!

IHMI Lab, APPCAIR, BITS Pilani Goa

India
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