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Motivation and Background

Let’s assume a scenario,
s An HCl researcher plans for a long-term user study

e for emotion self-report collection
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Motivation and Background
During the study,

m Some participants drop out in between
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Motivation and Background
During the study,
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Research Question

Can we develop efficient approaches to counter the
data loss?

s Wwithout rerunning user study
e incurs cost (time, effort)

s without using any additional sensor details
e INCUrs energy, raises privacy concerns



MUSE: MTL for Emotion Self-report Estimation
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MUSE: MTL framework for emotion self-report estimation
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MUSE: MTL for Emotion Self-report Estimation
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MUSE: MTL framework for emotion self-report estimation



MUSE: MTL for Emotion Self-report Estimation

MUSE: Multi-task Learning Framework for User Similarity
based Emotion Self-report Estimation

s estimate missing emotion self-reports of drop-out
participants

e quantify emotion self-report behvaior
o Self-report estimation modeling



User Study I: Homogeneous Population

s 24 participants (20M, 4F) = university
students

s Reported four emotions using the Ul
as shown

e Happy, sad, stressed, relaxed
e 6-week study
e [otal self-reports: 5677

i @ A & 19:29

< Select your Emotion

How are you feeling now?
O Sad / Depressed

() Happy / Excited
O Stressed
(®) Relaxed

O No Response

RECORD EMOTION

Self-report Ul

Activeness

Relaxed

Tired

Circumplex model
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User Study I: Homogeneous Population

s Self-report quantification
e Emotion transition
e Emotion persistence
e Emotion recurrence length
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. Homogeneous Population

reporting similarity

m Self-

User Study |
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User Study I: Homogeneous Population

s Self-reporting characteristics: Emotion discrimination
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User Study I: Homogeneous Population

s Self-reporting modeling: MTL network

e Everytask = user

MTL Neural Network

o Shared layer

o Task-specific layer




User Study I: Homogeneous Population

s Performance evaluation
e Overall mean AUCROC - 84% (SD: 18%)
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User Study Il: Heterogeneous Population

s 30 participants (16 M, 14F)
s Diverse profile

RECORD EMOTION

e Geo location, qualification,
background

Self-report Ul

s Reported same four emotions
o 3-week study
e Total self-reports: 7314
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User Study Il: Heterogeneous Population

s Performance evaluation
e Overall mean AUCROC - 82% (SD: 14%)
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Utility of MUSE: Downstream Application

s Smartphone keyboard based emotion detection
e Extract typing features
e Correlate them with emotion self-reports
o happy, sad, stressed, relaxed
e Develop ML model for emotion inference

0 @ A & 19:29
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Utility of MUSE: Downstream Application

s Evaluation

e Scenario I: Original self-reports are used

e Scenario ll: Estimated self-reports (by MUSE) are
used

No significant difference in\ £ 704
emotion detection F-score, if ‘ g 601
estimated self-reports are used to

\_train the model
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Conclusion

s Proposed MUSE

e Multi-task Learning Framework for User
Similarity based Emotion Self-report Estimation

o Self-report quantification
e Evaluated with two large-scale user studies

e Efficient in downstream task for smartphone
keyboard based emotion detection
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More details about the paper,

https://doi.org/10.1145/3613904.3642833
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MUSE: Multi-task Learning Framework for User Similarity
based Emotion Self-report Estimation

= quantify self-reporting behavior
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MUSE: Multi-task Learning Framework for User Similarity
based Emotion Self-report Estimation

= apply MTL (Multi-task Learning) for self-report estimation
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Probable solution,

Alternate solution
s Estimate the missing self-reports accurately
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MUSE: Multi-task Learning Framework for User Similarity
based Emotion Self-report Estimation

s estimate missing self-reports of drop-out participants
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MUSE: Multi-task Learning Framework for User Similarity
based Emotion Self-report Estimation

s estimate missing self-reports of drop-out participants
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MUSE: Multi-task Learning Framework for User Similarity
based Emotion Self-report Estimation

= quantify self-reporting behavior

Day, Day, ee+ee Day, {U}-U,
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MUSE: Multi-task Learning Framework for User Similarity
based Emotion Self-report Estimation

= apply MTL (Multi-task Learning) for self-report estimation
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Experimental evaluation

s Estimate four emotions (happy, sad, stressed, relaxed)
= Study | (N=24) > AUCROC of 84%

= Study Il (N=30) 2> AUCROC of 82%
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More details about the paper,
= https://doi.org/10.1145/3613904.3642833
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