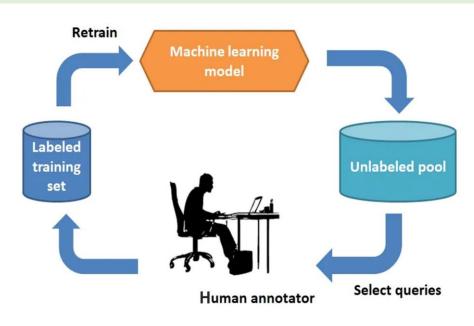


Self-SLAM: A Self-Supervised Learning Based Annotation Method to Reduce Labeling Overhead

Alfiya M. Shaikh, Hrithik Nambiar, Kshitish Ghate, Swarnali Banik, Sougata Sen, Surjya Ghosh, Vaskar **Raychoudhury, Niloy Ganguly, Snehanshu Saha**

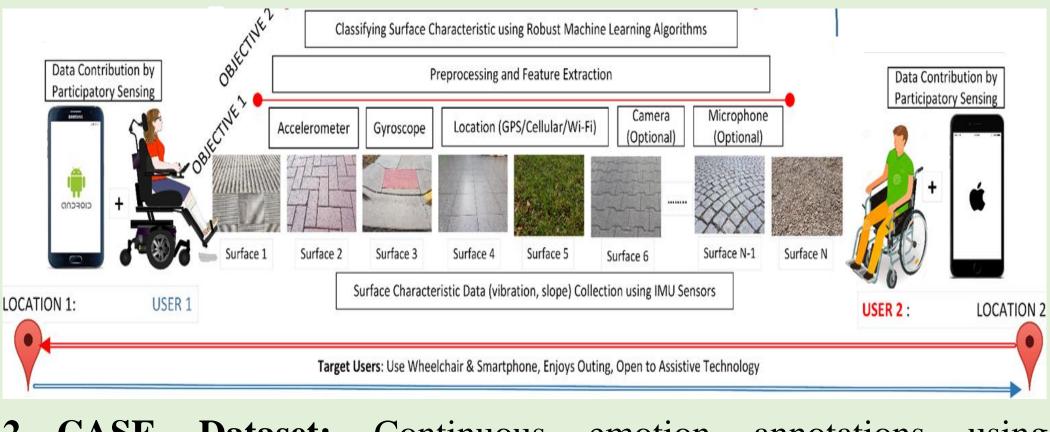
Introduction

•Deep Neural Networks need large labeled datasets for accuracy. •Manual annotation is costly, time-consuming, and error-prone. •SSLAM (Self-Supervised Learning-based Annotation Method) reduces annotation overhead using self-supervised learning. •Introduces a novel *log-cosh* loss function to handle noisy labels effectively, ensuring robust learning.



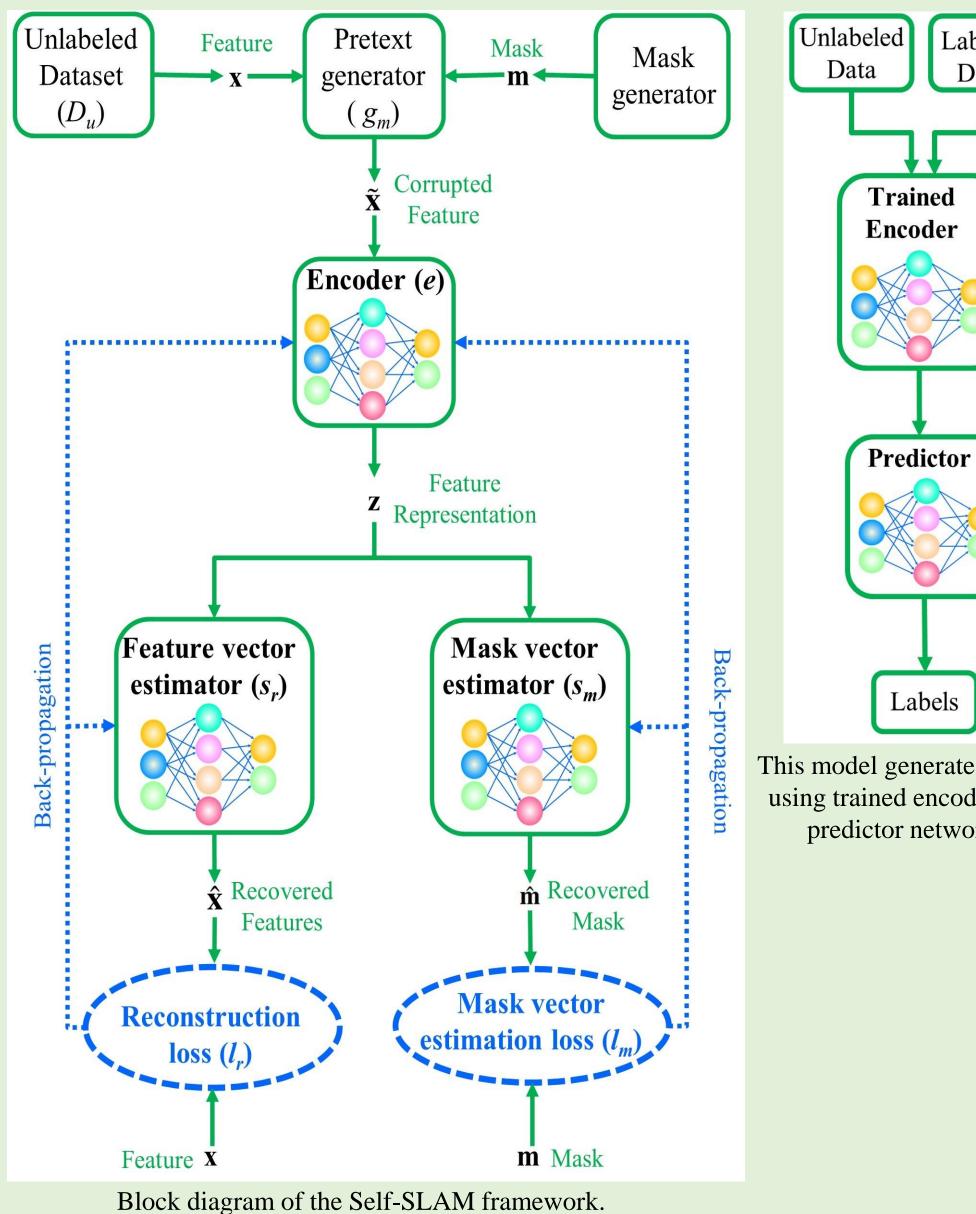
Datasets

1. Wheelchair Vibration Dataset: Surface classification based on wheelchair-induced vibration data.



Methodology

- Generates labels from unlabeled data using Feature Vector Estimation and Mask Vector Estimation.
- Utilizes a parameterized Elliot activation function to enhance the encoder's representation learning.
- **Log-Cosh Loss Function,** defined as $L(x) = \log(\cosh(x))$, Combines MSE's smoothness with MAE's robustness to outliers for handling noisy labels.
- Parameterized Elliot Activation Function: Improves encoder learning and accuracy in label generation.



2. CASE Dataset: Continuous emotion annotations using physiological signals.

Results

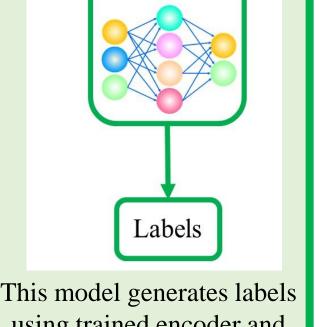
Surface Classification (Wheelchair Dataset):

SSLAM achieves 71.65% accuracy despite class imbalance in the dataset, surpassing MLP, XGBoost, and the state-of-the-art VIME baseline.

Emotion Annotation (CASE Dataset):

SSLAM records 90.01% accuracy for valence and 89.79% for arousal, outperforming traditional supervised methods and VIME.

	Model Type	Wheelchair data (85-15% split)		CASE data (85-15% split)	
		Accuracy	F1 Score	Valence Accuracy	Arousal Accuracy
	MLP	0.6740 ± 0.0211	0.6704 ± 0.0054	0.8130 ± 0.0040	0.7993 ± 0.0013
	Logistic Regression	0.4463 ± 0.0020	0.4063 ± 0.0012	0.6901 ± 0.0012	0.6806 ± 0.0010
	XGBoost	0.6305 ± 0.0089	0.6304 ± 0.0029	0.7330 ± 0.0009	0.7339 ± 0.0022
	VIME	0.6366 ± 0.0393	0.6065 ± 0.0381	0.6917 ± 0.0051	0.7213 ± 0.0042
	SSLAM	0.7165 ± 0.0054	0.7120 ± 0.0067	0.9001 ± 0.0024	0.8979 ± 0.0045



Labeled

Data

using trained encoder and predictor network.

Takeaways

•SSLAM reduces data labeling costs, enabling wider machine learning applications with large-scale unlabeled datasets.

•By leveraging a novel log-cosh loss function and self-supervised learning, SSLAM improves label quality and model performance. •Future work will focus on addressing class imbalance and enhancing scalability across varied datasets.

ACKNOWLEDGEMENT

• Anuradha and Prashanth Palakurthi Center for AI Research (APPCAIR), SERB-DST, Govt. of India, and Chanakya Fellowship from AI4CPS Innovation Hub, IIT Kharagpur.

