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Problem Statement

Retrain

 Deep Neural Networks require large amounts of r—>< > —1
labeled data for accurate predictions.

Labeled

training

* Manual  annotation is  time-consuming,
expensive, and error-prone. t '

human annotator

* Despite data abundance by pervasive devices,
much remains unlabeled due to annotation
challenges.

Need for automated methods to handle large,
unlabeled datasets.
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Motivation

e Minimizing Annotation Burden:

e Aim to reduce the manual data annotation workload.

eSelf-Supervised Learning:
eSelf-SLAM (SSLAM) uses self-supervised learning that generate labels from

unlabeled data.

*This method reduces the need for labeled data by solving pretext tasks.

eReal-World Application:

*SSLAM automates surface classification for wheelchair accessibility, reducing
manual effort.

eApplicable in various domains with large unlabeled datasets.
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Key Contributions

* Introduction of SSLAM to reduce annotation overhead.

* Creation and sharing of a novel wheelchair-induced surface vibration

dataset.
* Development of a robust log-cosh loss function.

 Demonstration of SSLAM'’s effectiveness across multiple datasets.
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1. Wheelchair dataset

Datasets

e Data from multiple surfaces across countries

Data Contribution by
Participatory Sensing
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Class Distribution of the collected wheelchair dataset

Rough brick road with gap
Concrete sidewalk

Brick read without gap
Red paver block sidewalk
Asphalt surface 1

Asphalt surface 2

Carpet

Linoleunn

Surfaces

Ceramic tiles

Up & down curbs

Sidewalk with red paver blocks
Sidewalk with concrete paver blocks
Outdoor paving tiles

Embedded stone texture

Striped concrete texture

=]

1000 2000 3000 4000 5000
Number of Datapoints

03-11-2024



Datasets

2. CASE Dataset: Continuous emotion annotation using physiological

variance

signals (ECG, BVP, GSR).
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Proposed Method: Self-SLAM Framework

* Data Corruption:

mask to simulate missing or noisy
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dataset (Du)
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features.

A portion of the training data is intentionally corrupted using a random binary

Back-propagation
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Proposed Method: Self-SLAM Framework

* Encoder Processing:

* Corrupted data fed into an encoder to learn low-dimensional representations.
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Proposed Method: Self-SLAM Framework

e Mask and Feature Vector Estimation:

* Feature Vector Estimation: Reconstructs original data from corrupted version.

Back-propagation
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Proposed Method: Self-SLAM Framework

* Mask Vector Estimation: Predicts which features were corrupted.

Back-propagation
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Proposed Method: Self-SLAM Framework

* Log-cosh? loss function used for balancing sensitivity and robustness.
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1. More details about the log-cosh loss can be found in this paper
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https://arxiv.org/pdf/2206.09333v3

Proposed Method: Self-SLAM Framework

* Label Generation and Downstream Tasks: Encoder generates labels
from unlabeled data for tasks like classification.

* Iterative Improvement: Process can be repeated with newly
generated labels to enhance model performance.

Unlabelled
Data
-
(topea)r ) L
Trained Predictor

Encoder
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Experimental Setup

* Experimental setup with labeled and unlabeled data split.
e Use of SSLAM to leverage unlabeled data for learning representations.

* Comparison with baseline models: MLP, Logistic Regression, XGBoost,

and VIME.
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Results: CASE Dataset

e Results on CASE dataset: SSLAM significantly outperformed baselines.

* Achieved 90.01% accuracy for valence prediction and 89.79% for
arousal prediction.

 Demonstrated robustness in handling noisy annotations.

Accuracy using 85-15% split

Accuracy using 80-20% split

ik (o Valence Arousal Valence Arousal
MLP 0.8130 = 0.0040(0.7993 + 0.0013[0.8034 + 0.0021|0.7911 =+ 0.0057
Logistic Regression|0.6901 + 0.0012]0.6806 + 0.0010]0.6877 + 0.0028|0.6899 + 0.0025
XGBoost 0.7330 = 0.0009(0.7339 + 0.0022(0.8467 + 0.0041]0.7343 + 0.0015
VIME 0.6917 + 0.0051(0.7213 + 0.0042(0.7197 + 0.0027]0.7093 + 0.0027
SSLAM 0.9001 % 0.0024/0.8979 + 0.0045/0.8949 + 0.0046|0.8884 + 0.0073
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Results: Wheelchair Dataset

e Results on the wheelchair dataset: SSLAM achieved 71.65% accuracy.

* Qutperformed MLP and VIME despite class imbalance.

* Demonstrated resilience to noisy data through the log-cosh loss

function.

Model Type

85-15% split

80-20% split

Accuracy

F1 score

Accuracy

F1 score

MLP

0.6740 + 0.0211

0.6704 + 0.0054

0.6347 + 0.0294

0.6309 + 0.0231

Logistic Regression

0.4463 + 0.0020

0.4063 + 0.0012

0.4307 + 0.0054

0.4237 £ 0.0073

XGBoost

0.6305 = 0.0089

0.6304 + 0.0029

0.6216 + 0.0019

0.6193 + 0.0147

VIME

0.6366 + 0.0393

0.6065 + 0.0381

0.6283 + 0.0317

0.6267 + 0.0318

SSLAM

0.7165 + 0.0054

0.7120 £ 0.0067

0.7074 £ 0.0059

0.7040 £ 0.0093
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Implications and Future work

 SSLAM reduces annotation burden by leveraging unlabeled data.

 Demonstrated superior performance across datasets with noisy and

imbalanced data.

* Future directions: Extending SSLAM to other datasets, exploring data

augmentation, and semi-supervised learning.

03-11-2024
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