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Problem Statement

• Deep Neural Networks require large amounts of

labeled data for accurate predictions.

• Manual annotation is time-consuming,

expensive, and error-prone.

• Despite data abundance by pervasive devices,

much remains unlabeled due to annotation

challenges.

• Need for automated methods to handle large,

unlabeled datasets.
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Motivation
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•Minimizing Annotation Burden:

•Aim to reduce the manual data annotation workload.

•Self-Supervised Learning:

•Self-SLAM (SSLAM) uses self-supervised learning that generate labels from 

unlabeled data.

•This method reduces the need for labeled data by solving pretext tasks.

•Real-World Application:

•SSLAM automates surface classification for wheelchair accessibility, reducing 

manual effort.

•Applicable in various domains with large unlabeled datasets.



Key Contributions

• Introduction of SSLAM to reduce annotation overhead.

• Creation and sharing of a novel wheelchair-induced surface vibration 

dataset.

• Development of a robust log-cosh loss function.

• Demonstration of SSLAM’s effectiveness across multiple datasets.
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Datasets
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1.  Wheelchair dataset

• Data from multiple surfaces across countries



Class Distribution of the collected wheelchair dataset

03-11-2024 6



Datasets
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2.   CASE Dataset: Continuous emotion annotation using  physiological 

signals (ECG, BVP, GSR).



Proposed Method: Self-SLAM Framework
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• Data Corruption:

•   A portion of the training data is intentionally corrupted using a random binary 
mask to simulate missing or noisy features.



Proposed Method: Self-SLAM Framework
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• Encoder Processing:

• Corrupted data fed into an encoder to learn low-dimensional representations.



Proposed Method: Self-SLAM Framework
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• Mask and Feature Vector Estimation:

• Feature Vector Estimation: Reconstructs original data from corrupted version.



Proposed Method: Self-SLAM Framework
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• Mask Vector Estimation: Predicts which features were corrupted.



Proposed Method: Self-SLAM Framework
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• Log-cosh1 loss function used for balancing sensitivity and robustness.

1. More details about the log-cosh loss can be found in this paper

https://arxiv.org/pdf/2206.09333v3


Proposed Method: Self-SLAM Framework
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• Label Generation and Downstream Tasks: Encoder generates labels 
from unlabeled data for tasks like classification.

• Iterative Improvement: Process can be repeated with newly 
generated labels to enhance model performance.



Experimental Setup
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• Experimental setup with labeled and unlabeled data split.

• Use of SSLAM to leverage unlabeled data for learning representations.

• Comparison with baseline models: MLP, Logistic Regression, XGBoost, 

and VIME.



Results: CASE Dataset
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• Results on CASE dataset: SSLAM significantly outperformed baselines.

• Achieved 90.01% accuracy for valence prediction and 89.79% for 
arousal prediction.

• Demonstrated robustness in handling noisy annotations.



Results: Wheelchair Dataset
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• Results on the wheelchair dataset: SSLAM achieved 71.65% accuracy.

• Outperformed MLP and VIME despite class imbalance.

• Demonstrated resilience to noisy data through the log-cosh loss 
function.



Implications and Future work
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• SSLAM reduces annotation burden by leveraging unlabeled data.

• Demonstrated superior performance across datasets with noisy and 

imbalanced data.

• Future directions: Extending SSLAM to other datasets, exploring data 

augmentation, and semi-supervised learning.
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