
8/10/2024 1

Towards Reducing Continuous Emotion Annotation Effort 

During Video Consumption: A Physiological Response 

Profiling Approach 

BITS Pilani
K K Birla Goa Campus

UBICOMP ‘24: The 2024 ACM International Joint Conference on Pervasive and Ubiquitous computing

Author(s): Swarnali Banik, Sougata Sen, Snehanshu Saha, Surjya Ghosh

Computer Science and Information Systems, APPCAIR

BITS Pilani Goa, INDIA



8/10/2024 2

Motivation and Background

• Emotion Detection Using ML 

Models : A Multi-Modal Approach

▪ Integrating Multiple Modalities

▪ Emotion ground truth

Typical ML-based emotion detection model

Information Sources: 

Video, Speech, 

Physiological Signals

Continuous Emotion 

Self-annotation 

(Ground Truth)
Emotion

ML Model

• Video-based applications
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Motivation and Background

• Post-interaction/ post stimuli

▪    Fails to capturing subtle intra-video nuances. 

Emotion Self-Annotation 
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Motivation and Background

• Continuous annotation 

▪ Degrades viewing experience.

▪ Increases cognitive load, leading to less 

accurate emotion labels.

Emotion Self-Annotation 

Participant watching videos and 

annotate continuously  
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Research Question
Can we developed an intelligent annotation framework ?

▪ Capture opportune moments  for  emotion self-report collection

▪ Reducing the number of self-annotations (probes)

• Decreases the cognitive workload 
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▪ Study procedure

• 36 participants (18M, 18F).

User Study I
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▪ Experiment apparatus

• Annotate app          

User Study I



8/10/2024 8

Circumplex Model

▪ Study procedure

• Used Circumplex model.

• Record valence and arousal 

rating on a 9-point scale.

User Study I
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▪ Study procedure

• 8 stimuli videos in random order

User Study I
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User Study I

▪ Experiment apparatus

• Galvanic skin response sensor (GSR V1.2)  

• Pulse rate sensor (HW-827)          
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Dataset: Data Pre-processing

Time t Seconds Time t Seconds Time t Seconds

Change Point Score

Physiological 

Responses

Segment signals 

into fixed size 

windows (5 

second)

Compute the Change 
Point Score for two 

consecutive windows
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Dataset: Data Description
▪ Dataset description:

• Total 8608 segments.

User-wise distribution of opportune and inopportune 

segments

Segment distribution in total
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PResUP Framework

PResUP: Physiological Response based User Profiling

Overview of the PResUP framework 

• Reduces continuous emotion self-report annotation effort

• Detects opportune moments
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PResUP Framework
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PResUP Framework
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PResUP Framework
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PResUP Framework

p-LSTM-based architecture used in the PResUP framework

The parameterized Elliott activation functions:



8/10/2024 18

Evaluation
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Deployment of PResUP Framework
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Deployment of PResUP Framework
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▪ Study procedure

• 18 participants (13M, 5F).

User Study II
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▪ Experiment apparatus

• Annotate app          

User Study II
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User Study II

▪ Experiment apparatus

• Galvanic skin response sensor (GSR V1.2)  

• Pulse rate sensor (HW-827)          
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Evaluation (after deployment)



Future scope
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• Expand physiological signals

• Enhance user experience

• Mobile Platform Applicability



Thank You!
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Dataset: Data Pre-processing

Physiological 

Responses

Segment signals 

into fixed size 

windows (5 

second)

Compute the Change 
Point Score for two 

consecutive windows

Eliminate lower end 

outliers and retain higher 

end outliers

Perform K-means 

clustering (K = 2)

Find cluster with 

the higher 

centroid

Select the points from 

the higher centroid 

cluster with scores 

above the centroid

labelled as opportune 

moments

Combine these 

points with the 

identified outliers
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Evaluation Metrices

• Probing Rate

• True Positives Rate (TPR)

• False Positives Rate (FPR)

• Likelihood Ratio (LR+) : 
TPR (Sensitivity)

FPR(1−Specif icity)
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Evaluation
Actual : Original valence (and arousal) present in continuous annotation

Probed: Sampled valence (and arousal) using PResUP

No significant difference between ground truth continuous 
annotations and sampled values using PResUP framework



Post-study user Survey
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Dataset : CASE [1] 

Circumplex Model

[1] - Sharma, K., Castellini, C., van den Broek, E.L. et al. A dataset of continuous affect annotations and physiological signals for emotion analysis. Sci Data 6, 196 (2019). 

https://doi.org/10.1038/s41597-019-0209-0

Participant watching videos and 

annotate continuously  

• 30 users (15 M, 15F)

• 2D plane - Joystick Input 

• Collected emotion self-

report annotation
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Dataset : CASE [1] 

[1] - Sharma, K., Castellini, C., van den Broek, E.L. et al. A dataset of continuous affect annotations and physiological signals for emotion analysis. Sci Data 6, 196 (2019). 

https://doi.org/10.1038/s41597-019-0209-0

The 8 videos present in the CASE dataset

• 8 videos in randomized order

• Physiological sensors data collected 

▪ Electrocardiograph (ECG) 

▪ Blood Volume Pulse (BVP) 

▪ Galvanic Skin Response (GSR) 

▪ Respiration (RSP) 

▪ Skin Temperature (SKT) 

▪ Electromyography (EMG) 
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Data Description

• Total 7,290 segments.

• 11.6% are opportune and 88.4% are inopportune.



Evaluation
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Performance comparison of PResUP and baselines.



Dataset : K-EmoCon [1]
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• 32 Participants (12F, 20M). 

• 16 paired debates on accepting Yemeni refugees 

in Jeju, South Korea. 

• Audio-visual recordings captured the debates.

• Continuous emotion annotations were made from 

three perspectives: subjects, partners, and 

external observers.

[1] C. Y. Park, N. Cha, S. Kang, A. Kim, A. H. Khandoker, L. Hadjileontiadis, A. Oh, Y. Jeong, and U. Lee, “K-emocon, a multimodal sensor dataset for continuous emotion 

recognition in naturalistic conversations,” Scientific Data, vol. 7, no. 1, pp. 1–16, 2020.

The participants sitting at a table for a debate
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Dataset: Data Description

• Total 6644 segments.

• 13.6% are opportune and 86.3% are inopportune.



Evaluation
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Performance comparison of PResUP and baselines.
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