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* Smartphones
— Integral part of our daily life
— Easy to track activities, location details, call history etc.

— Opportunity to determine emotion states

* Moodscope Mobisys 131 "Boredom detection [UbiComp 15]
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Objective

* Design light-weight, non-intrusive emotion detection
application using smartphone

* Typing activity in smartphone
— Non-intrusive
— Low resource consumption
— Prevents monitoring overhead of multiple sensors

— Privacy preserving (if content not looked at)

* Inspired by emotion detection using keyboard dynamics
— Epp et al. [SigChi 11]
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User Survey

e Goal: Qualitative insight
— on use of typing based applications on smartphones
— Correlation between typing and emotion
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* 56% users spent more than 30 mins daily
 Most used typing based apps are messaging apps
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User Survey: Typing Cues for Emotion
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TapSense Architecture
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* TlapLogger

— Traces typing activity

* ESMLogger
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— Collects emotion self-reports

TapSense Architecture

e Feature Extraction
— Identify features

e Model Construction
— Personalized, RF based



TapSense: Design Challenges

* How to collect Typing data ?

— Granularity of typing data collection

* Collect Self-reports from users
— Apply Experience Sampling Method (ESM)

— Must maintain a balance between “how many probes”™
and “timeliness” of the probe

— How accurate are the self-reports ?

TapSense Architecture



Typing Session Identification
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* Typing details are extracted session-wise

* Typing session

— Tap events within an app without app switch

TapSense Architecture



Emotion Self-report Collection
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Self-report collection

— Report among 4 emotion state
* Relaxed, Happy, Stressed, Sad

— Dominant emotion from each quadrant
— Emotion recording can be skipped by selecting No Response

TapSense Architecture



* Self-report collection
— Survey fatigue to be kept low
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Attach Self-reports to Typing Session
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Collected self-report is tagged to the previous typing session

TapSense Architecture



Feature ldentification: Typing Speed
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* Inter-Tap Distance (ITD)

— Elapsed time between entering two character 1s ITD

e Mean Session ITD

— Compute mean of all /TDs 1n a session, which 1s
known as Mean Session ITD

— Representation of typing speed

TapSense Architecture



Refined Mean Session ITD (RMS))
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* Mean Session ITD (MSI)
— Overlapping ITDs, not distinguishable enough

* Refined Mean Session ITD (RMSI)

— Identify major cluster using K-means

— Compute mean of I'TDs present in that cluster

TapSense Architecture



Keystroke Features

Typing Session Typing Session
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Percentage of Backspaces in a Session

— Typing mistakes while 1n a given emotion
Percentage of Special Characters in a Session

— To trace usage of special chars 1n an emotion state

TapSense Architecture



User Study

Study duration — 3 Weeks (in-the-wild)
Total number of participants — 30

— University students
— 24 males, 6 females, aged between (24 — 33) years

Installed TapSense 1n participant mobile phones

Final participants — 22 (20 male, 2 female)

— Had to exclude 8 participants
* 3 participants left in between
* 5 participants recorded less than 40 labels

DataSet



User Study: Emotion Distribution
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* Relaxed is the most dominant state reported

 Used SMOTE to overcome sample imbalance
— If an emotion label is absent, then do nothing

— If an emotion label is low, then raise it to match the next
higher sample count

DataSet



Evaluation

Personalized model for individual emotion
prediction

— Logistic Regression, SVM, Random Forests
Used 10 fold cross-validation

Classification accuracy measured using

— AUCROC

* Weighted average of AUCROC in predicting each emotion
category, where weight is the proportion of the samples

— F-score

Importance of each feature
— Information gain per feature

Evaluation



Classification Accuracy
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(b) State-wise AUCROC, F-score

* Average AUCROC of 73% (std: 9%)
* Prediction accuracy for all states > 60%

Evaluation




Feature Analysis

Feature Rank | Avg. IG
RMSI I 0.461
MSI 2 0.422
Number of backspace 3 0.368
Number of special character 4 0.202
Session text length 5 0.199
Session duration 6 0.197

 RMSI and MSI are the most important features
— Typing rhythm or speed

* Use of backspace =2 more deletions related to emotion
state

* Special characters or emoticons indicate certain states

Evaluation



Limitations

Importance of short typing sessions
— Typing sessions were on average 8 mins

— Longer typing sessions =2 there can be multiple emotion
switches =» how to capture without probing more frequently ?

Alternative ESM design

— More balanced data collection =2 reduce sampling for cases
where multiple labels collected already

* Predict expected label and decide to drop/collect

Gender Bias in user study group

Adding features, like swype, auto-completion

Take-home Points



Take-home Points

* Light-weight, non-intrusive emotion detection
system using only typing features 1s feasible

* Average accuracy (AUCROC) of 73% 1n a 3-
week study involving 22 participants

Take-home Points



Project Site:
http://cse.litkgp.ac.in/~surjya.ghosh/projects.html
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* Challenges
— Extract Typing session

— Collect Self-reports
e Manual = survey fatigue
* Psycho-physical sensor based =2 intrusive setup

— Personalized training for every user Prediction
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