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Introduction

Motivation

* Approximately320 million people suffering from
depressive disorder symptoms across the globe [1]
« Early diagnosis and counselling can help in great

322
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J.

extent [2] ’
¢ Manifestations of depressive symptoms are difficult
to track Cases of depressive disorder (millions),
by WHO region [1]
* Background

* Sensor-rich ubiquitous smartphones can unobtrusively track interaction pattern

* Significant portion of interaction is based on text input (WhatsApp, FB Messenger)

* Typing activity on smartphone carries emotion signature [3]

* However, such emotion detection models mostly rely on cloud-based services, thereby suffer
¢ - Privacy concern
¢ > Network delay

Problem Statement

« Can different emotions be tracked based on typing interaction on the smartphone itself with
monitoring capability ?

Experiment Setup

Performed 10-fold cross-validation and measure emotion classification performance
a) AUCROC (auc,,) b) F-score

* f; >fraction of samples for emotion i
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Measured following in terms on training overhead on the device
a) Training latency b) Battery consumption

EmoKey Design

* Typing-based Emotion Detection Scenario

« Identify typing session Emotion ground truth
* time spent on a single app ( \
uninterruptedly
« extract typing features
 Collect emotion self-reports
« four emotions based on
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Typing features
* Emotion-monitoring interface

X Schematic of typing-based emotion detection
« Store emotion self-reports

« Self-reports during training
Predicted emotions during deployment

Evaluation: Emotion Classification
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EmoKey Implementation
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Android based application

On-device, personalized Random Forest
based model for emotion detection
Features

Category

Emotion self-reporting UI

Feature Name
Session ITD (MSI)

Mean Session ITD (RMST)

Number of special characters

Number of backspaces (or delete)

Keystroke Features

* Prediction result (80 -
20% split) after
deployment for one
representative user
¢ Average accuracy: 75%
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Model validation for sample user on the monitoring interface

Evaluation: Resource Overhead

* Setup
* OnePlus X (2.3 GHz quad-core Qualcomm Snapdragon 801 3GB RAM)
* Synthetically added training records

Session duration
Session text length
Tast ESM Response

Emotion monitoring interface

Auxiliary Features

Field Study and Dataset

Installed EmoKey app in the smartphone of the volunteers for collecting typing details and
emotion self-reports
22 students (20 male, 2 female, aged between 24-33 years)
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Conclusion

* Design and develop an emotion-aware smartphone keyboard, which detects four emotions(happy,
sad, stressed, relaxed) based on text input interactions deploying an on-device prediction model

* Itreturns an average accuracy of 78%, (std dev. 10%)

* Additionally, provides an interface for mental health monitoring

« Reveals scope for devising efficient on-device models for long-term mental health monitoring

3-week in-the-wild study

Total typing events 529698 * Total typing sessions: 2705

Total typing sessions 2705 + Eliminated No Response sessions: 2.5%
Total typing duration 135 Hr.

Fnelrmu:erqumg ?ebal\\;}s 123. 105, 40 ;

Median session duration | 98 sec. Final dataset

Median session length 114

Distribution of emotion samples is found to be skewed as users often reported relaxed or stressed
emotion
* Happy: 18%, Sad: 9%, Stressed: 21%, Relaxed: 52%
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