

A Comparative Study between ECG-based and PPG-based Heart Rate Monitors for Stress Detection

Authors: Anuja Pinge, Soumyadip Bandyopadhyay, Surjya Ghosh, Sougata Sen Presenter: Anuja Pinge

COMSNETS 2022

- Wearable devices monitor Heart rate,
 Step Count, Sleep, Oxygen level of an individual.
- Heart rate is an interesting feature.
- Heart rate can be collected using two methods:
 - Electrocardiogram (ECG)
 - Photoplethysmogram (PPG)

Electrocardiogram (ECG)

Photoplethysmogram (PPG)

Background

Prior work compared Polar H7 with clinical-grade sensors.

- It measured stress in lab as well as free-living conditions.
- Features computed were used here.

Motivation

 RR_1 RR_2 RR_3 ECG Signal RR₂ RR_3 RR₁ **PPG Signal**

6

Our study aims at finding

• Whether wrist worn device can provide similar performance to chest-worn devices?

1

• Can the data collected from different devices be used to detect stress under same circumstances?

Methodology

- The entire process is divided in four major steps:
 - 1. Data Collection
 - 2. Data Cleaning and Processing
 - 3. Feature Extraction and Ground Truth Labelling
 - 4. Model Construction

Data Collection [1/4]

• Device Setup

Devices Used

- Polar H10
 - Gives one reading per second
- Garmin HRM Dual
 - Gives two readings per second
- Garmin Vivosmart 4 Fitness Band
 - Gives one reading per 15 seconds.

Data Collection [1/4]

Laboratory Study Protocol

- 5 participants (3 males, 2 females).
- 25 years to 35 years.
- Duration: 45 minutes
- Android app over BLE.

- 1. V. Mishra, G. Pope, S. Lord, S. Lewia, B. Lowens, K. Caine, S. Sen, R. Halter, and D. Kotz, "Continuous detection of physiological stress with commodity hardware," ACM Trans. Comput. Healthcare, vol. 1, no. 2, apr 2020. [Online].
- 21-01-2022 2. B. Egilmez, E. Poyraz, W. Zhou, G. Memik, P. Dinda, and N. Alshurafa, "Ustress: Understanding college student subjective stress using wrist-based passive sensing," in IEEE International Conference on Pervasive Computing and Communications Workshops, 2017.

Data Cleaning and Processing [2/4]

Feature Extraction and Ground Truth Labelling [3/4]

- Window Size=60 seconds & 50% overlap
- Features are computed using Heart rate data and R-R intervals.
- Windows extracted are labelled as
 - Rest Period => Not Stressed
 - Stressed Period => Stressed

Heart Rate Features	R-R Interval Features	
 Maximum Heart Rate Minimum Heart Rate Mean Heart Rate Median Heart Rate Standard deviation 80th Percentile 20th Percentile 	 Maximum R-R Interval Minimum R-R Interval Mean R-R Interval Median R-R Interval Standard deviation 80th Percentile 20th Percentile RMSSD 	

1. V. Mishra, G. Pope, S. Lord, S. Lewia, B. Lowens, K. Caine, S. Sen, R. Halter, and D. Kotz, "Continuous detection of physiological stress with commodity hardware," ACM Trans. Comput. Healthcare, vol. 1, no. 2, apr 2020. [Online].

[1]

Model Construction [4/4]

- Random-Forest Classifier is used to train the model for stress detection.
- The data from each device is trained separately with person independent data.

Evaluation

Our study aims at finding

- Whether wrist worn device can provide similar performance to chest-worn devices?
- Can the data collected from different devices be used to detect stress under same circumstances?
- Heart Rate Comparison
 - Heart rate readings are compared at granularity of 1 reading per second.
 - RMSE is calculated between the Polar H10 and other two devices.

Device	RMSE (bpm)		
Garmin HRM Dual	5.2		
Garmin Vivosmart 4	10.23		

Evaluation

- Stress Detection
 - Leave One Person Out Cross Validation is used.
 - Precision, Recall, Accuracy and F1-Score are noted.

Device	Accuracy	Precision	Recall	F1-Score
Polar H10	0.85	0.85	0.84	0.85
Garmin HRM DUAL	0.81	0.88	0.76	0.82
Garmin Fitness Band	0.83	0.87	0.74	0.80

Formalism

• **Rule** : $avg(HeartRate) > 0.35 \land stdev(HeartRate) > 0.05 \Rightarrow Stressed$

Future Work

1.Adaptive Sampling for ECG Detection Based on Compression Dictionary - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Adaptive-sampling-principle-of-the-ECG-signal_fig2_264144471 [accessed 25 Dec, 2021]

21-01-2022

Conclusion

- Here three devices that use different technologies for capturing Heart rate are compared.
- RMSE of Garmin HRM Dual and Garmin Vivosmart 4 was 5.2 and 10.23 respectively.
- Also stress detection ability of each device was evaluated.
- It is observed that the difference in F1-score of detecting stress by the three devices is within 5% .
- We provide formal verification of our trained model.

Email id : anu.pinge@gmail.com