Towards Autism Screening through Emotion-guided Eye Gaze Response

Surjya Ghosh*, Tanaya Guha#

*Centrum Wiskunde and Informatica, The Netherlands
#University of Warwick, UK
Background

- **Autism Spectrum Disorder (ASD)**
 - Neurodevelopmental disorder \[^1, 2\]
 - Significantly impaired social interaction \[^3, 4\]
 - Limits communication abilities

- **ASD symptom manifestations**
 - Facial expression \[^5\]
 - Atypical gaze response \rightarrow fixate less \[^6\]

- **Automated approaches for screening ASD**
 - Pupil diameter correlates with ASD

Require expert involvement, computationally-complex, and often time-consuming
Research Question

- Emotion \(\rightarrow \) integral component in communication
 - Influence facial expression \(^7\)
 - Influence eye gaze responses \(^8\)

- Possibility to explore the role of emotion
 - For ASD subjects

Can we leverage eye gaze responses based on the emotional stimuli to screen ASD?
Field Study & Dataset

- **Experiment Apparatus**
 - VR-based social interaction platform
 - Avatar narrates story related to social situations
 - Avatar expresses 3 types of emotions (angry, happy, neutral)
 - Avatar asks questions after the story
 - Participants respond with menu-driven interface
 - During interaction participant’s eye gaze data collected

- **Dataset details**

<table>
<thead>
<tr>
<th>TABLE I: Details of the eye gaze dataset used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
</tr>
<tr>
<td>Total (short) sessions</td>
</tr>
<tr>
<td>Average session duration</td>
</tr>
<tr>
<td>ASD sessions</td>
</tr>
<tr>
<td>TD sessions</td>
</tr>
</tbody>
</table>

Data collection setup in a VR-based social interaction platform
Data Analysis

- Pupil diameter, fixation duration, and fixation location
 - Vary significantly ($p<0.001$) between two types of sessions

- Not normal distribution
- Unpaired Mann-Whitney Test
Methodology

- **Session Representation**
 - A set of eye gaze parameters
 - At every time step ‘t’
 - Pupil diameter
 - Fixation duration
 - Fixation location

- **LSTM cells**

- **Dropout layer**

- **Dense layer**
 - Sigmoid function
 - Binary classification (ASD / TD)

LSTM-based model for ASD screening
Evaluation

● Baseline
 ○ RF-based
 ○ Features extracted from sessions
 ■ (mean, median) of pupil diameter
 ■ (mean, median) of fixation duration
 ■ mode of fixation location

● Ablation Study
 ○ Fixation location is the most discriminating

● Emotion Stimuli’s Influence
 ○ Angry, happy stimuli are better

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Baseline</td>
<td>67.8 ± 8.7</td>
</tr>
<tr>
<td>LSTM (proposed)</td>
<td>77.3 ± 3.5</td>
</tr>
</tbody>
</table>

Ablation

LSTM-pupil dia	59.1 ± 6.3
LSTM-fix dur	54.8 ± 12.5
LSTM-fix loc	69.9 ± 7.9
LSTM w/o pupil dia	72.2 ± 6.5
LSTM w/o fix dur	76.4 ± 6.4
LSTM w/o fix loc	61.9 ± 9.7

TABLE II: ASD screening results

Stimuli-wise ASD screening performance
Conclusion

- Emotion-guided eye gaze response for ASD screening
 - Proposed an LSTM-based classification model
 - Leverages eye gaze parameters (pupil diameter, fixation duration, fixation location) for the screening
 - Returns an average F-score of 77%
 - Angry, and happy emotion stimuli are found more effective in screening ASD
References

Thank You!!

surjiya.ghosh@gmail.com

tanaya.guha@warwick.ac.uk

https://surjiya-ghosh.github.io/

https://www.tanayag.com/