Towards Autism Screening through Emotionguided Eye Gaze Response

Surjya Ghosh^{*}, Tanaya Guha[#]

*Centrum Wiskunde and Informatica, The Netherlands #University of Warwick, UK

Background

• Autism Spectrum Disorder (ASD)

- Neurodevelopmental disorder ^[1, 2]
- Significantly impaired social interaction^[3, 4]
- Limits communication abilities

• ASD symptom manifestations

- Facial expression ^[5]
- Atypical gaze response \rightarrow fixate less ^[6]
- Automated approaches for screening ASD
 - Pupil diameter correlates with ASD

Require expert involvement, computationally-complex, and often time-consuming

Research Question

- Emotion \rightarrow integral component in communication
 - Influence facial expression ^[7]
 - Influence eye gaze responses [8]

- Possibility to explore the role of emotion
 - For ASD subjects

Can we leverage eye gaze responses based on the emotional stimuli to screen ASD?

Field Study & Dataset

- Experiment Apparatus
 - VR-based social interaction platform
 - Avatar narrates story related to social situations
 - Avatar expresses 3 types of emotions (angry, happy, neutral)
 - Avatar asks questions after the story
 - Participants respond with menu-driven interface
 - During interaction participant's eye gaze data collected

Dataset details

TABLE I: Details of the eye gaze dataset used

Number of subjects	16 (8 ASD, 8 TD)
Total (short) sessions	1,305
Average session duration	16.2 seconds
ASD sessions	625 (218 Angry, 208 Happy, 199 Neutral)
TD sessions	680 (235 Angry, 231 Happy, 214 Neutral)

Data collection setup in a VR-based social interaction platform

Data Analysis

- Pupil diameter, fixation duration, and fixation location
 - Vary significantly (p<0.001) between two types of sessions

Not normal distribution

• Unpaired Mann-Whitney Test

Methodology

- Session Representation
 - A set of eye gaze parameters
 - At every time step 't'
 - Pupil diameter
 - Fixation duration
 - Fixation location
- LSTM cells
- Dropout layer
- Dense layer
 - Sigmoid function
 - Binary classification (ASD / TD)

LSTM-based model for ASD screening

Evaluation

Baseline

- **RF-based**
- Features extracted from sessions
 - {mean, median} of pupil diameter
 - {mean, median} of fixation duration
 - mode of fixation location

Ablation Study

• Fixation location is the most discriminating

Emotion Stimuli's Influence

• Angry, happy stimuli are better

TABLE II: ASD screening results

Model	Accuracy (in %)
RF Baseline	67.8± 8.7
LSTM (proposed)	77.3 ± 3.5
Ablation	
LSTM-pupil dia	59.1± 6.3
LSTM-fix dur	54.8 ± 12.5
LSTM-fix loc	69.9± 7.9
LSTM w/o pupil dia	72.2± 6.5
LSTM w/o fix dur	76.4 ± 6.4
LSTM w/o fix loc	61.9± 9.7

Stimuli-wise ASD screening performance

7

Conclusion

• Emotion-guided eye gaze response for ASD screening

- Proposed an LSTM-based classification model
 - Leverages eye gaze parameters (pupil diameter, fixation duration, fixation location) for the screening
 - Returns an average F-score of 77%
- Angry, and happy emotion stimuli are found more effective in screening ASD

References

[1] P Bolton, H Macdonald, A Pickles, P al Rios, S Goode, M Crowson, A Bailey, and M Rutter, "A case-control family history study of autism," Journal of child Psychology and Psychiatry, vol. 35, no. 5, pp. 877–900, 1994.

[2] G Dawson, A N Meltzoff, J Osterling, J Rinaldi, and E Brown, "Children with autism fail to orient to naturally occurring social stimuli," Journal of autism and developmental disorders, vol. 28, no. 6, pp. 479–485, 1998.

[3] A Klin, W Jones, R Schultz, F Volkmar, and D Cohen, "Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism," Archives of General Psychiatry, vol. 59(9), pp. 809–816, 2002.

[4] R B Grossman, R Edelson, and H Tager-Flusberg, "Emotional facial and vocal expressions during story retelling by children and adolescents with high-functioning autism," J Speech, Language, and Hearing Research, vol. 56(3), pp. 1035–1044, 2013.

[5] T Guha, Z Yang, R B Grossman, and S S Narayanan, "A computational study of expressive facial dynamics in children with autism," IEEE Trans. Affective Computing, vol. 9(1), pp. 14–20, 2016.

[6] Z Akhtar and T Guha, "Computational analysis of gaze behavior in autism during interaction with virtual agents," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 1075–1079.

[7] Ko, Byoung Chul. "A brief review of facial emotion recognition based on visual information." sensors 18.2 (2018): 401.

[8] Hietanen, Jari K. "Affective eye contact: an integrative review." Frontiers in psychology 9 (2018): 1587.

Thank You!!

surjya.ghosh@gmail.com

tanaya.guha@warwick.ac.uk

https://surjya-ghosh.github.io/

https://www.tanayag.com/