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* Text-entry in small touch-based devices

— relatively inconvenient due to limited space

2
* To facilitate, different techniques like auto-
complete, auto-suggest are used
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* However,
— reserves fixed space 1in keyboard layout
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— 1ncrease cognitive load
* to read, parse and select correct word [HI 2016]

[ Opportunity to improve the layout by making these techniques adaptive ]




* Multiple factors can guide auto-suggest usage

— typing volume
— application type

— user emotion

e as it influences typing behaviour [MobileHCT 2017, ACII2017]

* Can auto-suggestion usage be determined based
on human emotion?




Auto-suggest Usage Scenario
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Suggestions

* Auto-suggest usage
— tracing user typing and providing suggestions
— labelling auto-suggest usage

 accepted -2 if at least one suggestion is used in a session
* skipped - if no suggestion is used in a session

— tracking emotion during typing session

Auto-suggest Usage Scenario



Experiment Apparatus

Suggestions

(a) App keyboard

Custom keyboard

i 15 & 19:29

< Select your Emotion

How are you feeling now?
() sad / Depressed

() Happy / Excited
() stressed

(®) Relaxed

f-::l No Response

RECORD EMOTION

(b) Emotion collection Ul

Activeness

Energetic

Excited

Happy

Glad

Satisfied

ainsea|d

Calm

Relaxed

Tired

(c) Circumplex model

— tracing user typing and providing suggestions (based on English dictionary)
Emotion self-report collection Ul

— collects emotions at end of a session

— four emotions - happy, sad, stressed, relaxed (based on Circumplex model)

Methodology



Auto-suggest Usage Prediction Model

* Auto-suggest usage prediction model

— Personalized  [y/] — Features [/ ]

e Random Forest  Emotion-related features
. Feature name | Feature description
TWO Classes IZ Emotion,,, Emotion associated with current session

Emotion e, Emotion associated with previous session

® prev

accep ted : Elapsed time between previous and current
Timeeiqpsed session emotion recording time
Sess g timestamp

* skipped

Table 2: Features used for auto-suggest usage prediction
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Study parameters

Study duration 3-weeks (in-the-wild)
Total participants 20 (15 M, 5 F) = university students
Age range 20 — 35 years
Installed the app 1n the participants mobile phones
Excluded participants 7 (as recorded less than 20 suggestions)
Final participants 13 (10 M, 3 F)

Auto-suggest Usage Scenario = Methodology = User Study = Evaluation - Take-home Points



Total typing sessions 3,284
No Response sessions 330 (~ 10%)
Effective sessions 2954
Avg. session per user 227 (std dev. 151.7)
Auto-suggest accepted 841 (~28%)
Auto-suggest skipped 2,113 (~ 72%)
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Auto-suggest Usage Scenario = Methodology > User Study - Evaluation - Take-home Points

User-wise auto-
suggest usage reveals
that most of the users
- have more skipped
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Role of Emotion on Auto-suggest Usage

Does auto-suggest usage vary across emotions?

2 90 - -
g [JAccepted .
275 ‘.gkipped \ - Users more likely
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== / ( suggest when sad
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= Happy Sad Stressed Relaxed

Emotion state

Activeness

Auto-suggest usage across different emotions
Energetic

for all us ers nxious Excited
Stressed Happy

Glad
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Satisfied

Calm

* Relaxed, sad = Low activity level ‘
* May influence more auto-suggest usage

User Study



Role of Emotion on Auto-suggest Usage

Does auto-suggest usage vary across individual user emotions?
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Auto-suggest usage comparison across different emotions for individual user

* Majority of the users use auto-suggest in relaxed

* Distribution of emotions in accepted and skipped 1s
statistically significant (p <0.05) using chi-square test

User Study



Evaluation

* Experiment setup

— 10-fold cross validation
— Metrics: AUCROC, F-score

* Baselines
— Most-represented Emotion (MRE)

* Auto-suggest usage =2 highest in one emotion

* Personalized model, which determines auto-suggest usage
in these emotions

— Generalized (GEN)

* Aggregating data from all other users

* [.eave-one-out-cross-validation

Evaluation



Value (%)

Evaluation

* How accurate 1s the auto-suggest usage prediction model?

W% T T2 T T 1T T 17711 —~100
o~
80r G 80+ . N
60 2 so} —
2 = =
4&' =0 40+ 1
20f & 20f
o
= 0
1 2 3 4 5 & 7 & 9 1011 12 13 MRE GEN Proposed
User Auto-suggestion models
(a) Classification performance (b) Comparison with baselines

/' Avg. accuracy (AUCROC) - 73% (std dev 9%)
Outperforms the baselines

Evaluation



* How effective are the features to predict auto-suggest usage?

Feature Rank | Avg. IG
Emotion 1 0.1194
Emotion ., 2 0.1098
Time,;,50q 3 0.0794

Ranking different features based on InformationGain

W/ Current session emotion is the most discriminating one

Auto-suggest Usage Scenario - Methodology = User Study = Evaluation - Take-home Points




* How to improve auto-suggest usage prediction performance?
- Balancing the dataset (accepted and skipped class)

1001
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F-score (Acpt) F-score (Skip)
Metric

AUCROC

Classification performance after balancing the dataset

V& Classification performance improves after balancing dataset
— AUCROC - 82%
— F-score (Accepted) — 75%
— F-score (Skipped) — 78%

Auto-suggest Usage Scenario = Methodology = User Study = Evaluation - Take-home Points




Conclusion

* Auto-suggest usage is related with human
emotion

* more likely to use 1n sad or relaxed state

* Based on emotion, auto-suggest usage can be
detected with an accuracy of 82%

Take-home Points
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Dataset

* How close to the typing session, the emotion is
collected?
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Distribution of elapsed time between typing and emotion recording for all
sessions across all users.

e Median elapsed time is less than 5 minutes; 75™ and 90 percentile
elapsed time 1s less than 30 minutes and 1 hour respectively.

User Study
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User Study

Majority of the
users use auto-
suggest in relaxed

Distribution of
emotions in
accepted and
skipped is
statistically
significant using
chi-square test




Auto-suggest Usage Scenario

Methodology

— Experiment Apparatus

— Model Construction

User Study
— Field Study
— Dataset

Evaluation

Take-home Points



Background

* Text-entry in small touch-based devices

— relatively inconvenient due to limited space P
» To facilitate, different techniques like auto-
complete, auto-suggest are used BEEE—
— However, qawsedr'ftgyhuj i'ko.p
* need additional space crrennn
* increase cognitive load to read, parse and select correct word

[CHI 2016]

* Making auto-suggestions adaptive, when the users
are more likely to use can overcome these
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* Text-entry in small touch-based devices
— relatively inconvenient due to limited space
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* increase cognitive load
— to read, parse and select correct word [CHI 2016]

[ Opportunity to improve the layout by making these techniques adaptive ]




