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Motivation

● Emotion detection → ML model
○ Combination of different modalities and emotion ground truth

● Emotion ground truth → typically collected as manual self-report

Typical ML-based emotion detection model
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Stimulus User
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Need for an annotation approach to capture emotion with respect to intra-video 
nuances without (or minimal) disruption of the viewing experience



Problem Statement

Develop a new framework for emotion annotation 
that captures the intra video nuances, and at the 

same time reduce the number of probes
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Dataset : CASE (Continuously Annotated Signals of Emotion)[1]

A continuous dataset that annotates valence and arousal along with the outputs of 
6 sensors.

● Electrocardiograph (ECG)
● Blood Volume Pulse (BVP)
● Galvanic Skin Response 

(GSR)

● Respiration (RSP)
● Skin Temperature (SKT)
● Electromyography 

(EMG)
[1] - Sharma, K., Castellini, C., van den Broek, E.L. et al. A dataset of continuous affect annotations and physiological signals for 
emotion analysis. Sci Data 6, 196 (2019). https://doi.org/10.1038/s41597-019-0209-0 

Image of CASE Dataset Setup
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Dataset

● 30 users
● 8 videos in randomised order
● 2D plane - Joystick Input
● Emotional data collected - 

○ Valence & Arousal : Scale 1-9

Add picture 
here

Circumplex Model of emotions

CASE dataset video details
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Key Intuition behind the proposed approach

● Emotions change slowly as they have a residual effect.
● By exploring the dataset, we can see that these changes are reflected in 

physiological signals.
● Measuring these changes would allow us to probe at an opportune point.
● These probes would allow us to gather the intra-video nuances with minimal 

number of disturbances.

In summary, opportunistic annotation instead of continuous annotation
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OCEAN: Opportunistic Continuous Emotion Annotation

Take Physiological 
Signals

Time t in seconds
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Take Physiological 
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Retained 
Outliers

OCEAN: Opportunistic Continuous Emotion Annotation
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Take Physiological 
Signals
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Compute Change Point 
Score for consecutive 
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Probing Moments for 
emotion annotation

Select points from cluster 
with scores higher than 
centroid

Combine these points 
with the higher end 
outliers

OCEAN: Opportunistic Continuous Emotion Annotation
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Results

We see that there is an average decrease in probes by 89%

What is the reduction in the number of probes?

● Baseline probe - Every 
5 seconds in continuous 
mode of annotation
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Results (cont.)
Does reducing the number of probes affect annotation quality?

Change of arousal and valence against time
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Results (cont.)
Does reducing the number of probes affect annotation quality?

Table : Minimum, median and maximum values of arousal and valence for Actual and Sampled values
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Results (cont.)
Does reducing the number of probes affect annotation quality?

Table : Minimum, median and maximum values of arousal and valence for Actual and Sampled values
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Results (cont.)

We see that the average number of probes is 4 per user per video

What is the number of probes for the CASE dataset?
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Conclusions

● A novel framework designed for 
emotion annotation, OCEAN 
detects significant changes in the 
input signals and decides 
whether or not to probe for 
information using k-means 
clustering of change point scores

● Reduced number of probes by 
89% on average, yet captures 
similar annotation scores for 
valence and arousal
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Future Work

● Create a working prototype 
and run live user studies

● Quantify storage reduction 
and effects of latency of 
probing window size

● Generalizability of the 
framework (validation on 
other datasets)
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Thank You

Contact Me: f20190044@goa.bits-pilani.ac.in 

Website: https://akhileshadithya.github.io

Github: https://github.com/AkhileshAdithya  
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